scholarly journals Assessing the Trend of the Trophic State of Lake Ladoga Based on Multi-Year (1997–2019) CMEMS GlobColour-Merged CHL-OC5 Satellite Observations

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6881
Author(s):  
Augustine-Moses Gaavwase Gbagir ◽  
Alfred Colpaert

The trophic state of Lake Ladoga was studied during the period 1997–2019, using the Copernicus Marine Environmental Monitoring Service (CMEMS) GlobColour-merged chlorophyll-a OC5 algorithm (GlobColour CHL-OC5) satellite observations. Lake Ladoga, in general, is mesotrophic but certain parts of the lake have been eutrophic since the 1960s due to the discharge of wastewater from industrial, urban, and agricultural sources. Since then, many ecological assessments of the Lake’s state have been made. These studies have indicated that various changes are taking place in the lake and continuous monitoring of the lake is essential to update the current knowledge of its state. The aim of this study was to assess the long-term trend in chl-a in Lake Ladoga. The results showed a gradual reduction in chl-a concentration, indicating a moderate improvement. Chl-a concentrations (minimum-maximum values) varied spatially. The shallow southern shores did not show any improvement while the situation in the north is much better. The shore areas around the functioning paper mill at Pitkäranta and city of Sortavala still show high chl-a values. These findings provide a general reference on the current trophic state of Lake Ladoga that could contribute to improve policy and management strategies. It is assumed that the present warming trend of surface water may result in phytoplankton growth increase, thus partly offsetting a decrease in nutrient load. Precipitation is thought to be increasing, but the influence on water quality is less clear. Future studies could assess the current chemical composition to determine the state of water quality of Lake Ladoga.

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 186
Author(s):  
Md Mamun ◽  
Ji Yoon Kim ◽  
Kwang-Guk An

Paldang Reservoir, located in the Han River basin in South Korea, is used for drinking water, fishing, irrigation, recreation, and hydroelectric power. Therefore, the water quality of the reservoir is of great importance. The main objectives of this study were to evaluate spatial and seasonal variations of surface water quality in the reservoir using multivariate statistical techniques (MSTs) along with the Trophic State Index (TSI) and Trophic State Index deviation (TSID). The empirical relationships among nutrients (total phosphorus, TP; total nitrogen, TN), chlorophyll-a (CHL-a), and annual variations of water quality parameters were also determined. To this end, 12 water quality parameters were monitored monthly at five sites along the reservoir from 1996 to 2019. Most of the parameters (all except pH, dissolved oxygen (DO), and total coliform bacteria (TCB)) showed significant spatial variations, indicating an influence of anthropogenic activities. Principal component analysis combined with factor analysis (PCA/FA) suggested that the parameters responsible for water quality variations were primarily correlated with nutrients and organic matter (anthropogenic), suspended solids (both natural and anthropogenic), and ionic concentrations (both natural and anthropogenic). Stepwise spatial discriminant analysis (DA) identified water temperature (WT), DO, electrical conductivity (EC), chemical oxygen demand (COD), the ratio of biological oxygen demand (BOD) to COD (BOD/COD), TN, TN:TP, and TCB as the parameters responsible for variations among sites, and seasonal stepwise DA identified WT, BOD, and total suspended solids (TSS) as the parameters responsible for variations among seasons. COD has increased (R2 = 0.63, p < 0.01) in the reservoir since 1996, suggesting that nonbiodegradable organic loading to the water body is rising. The empirical regression models of CHL-a-TP (R2 = 0.45) and CHL-a-TN (R2 = 0.27) indicated that TP better explained algal growth than TN. The mean TSI values for TP, CHL-a, and Secchi depth (SD) indicated a eutrophic state of the reservoir for all seasons and sites. Analysis of TSID suggested that blue-green algae dominated the algal community in the reservoir. The present results show that a significant increase in algal chlorophyll occurs during spring in the reservoir. Our findings may facilitate the management of Paldang Reservoir.


2013 ◽  
Vol 10 (12) ◽  
pp. 15409-15432 ◽  
Author(s):  
T. Zhang ◽  
W. H. Zeng ◽  
S. R. Wang ◽  
Z. K. Ni

Abstract. Temporal and spatial changes to the water quality of Dianchi Lake in Southwest China were investigated using monthly monitoring data from 2005 to 2012. Based on the analysis of total phosphorus (TP), total nitrogen (TN), and chlorophyll a (Chl a) concentrations, it was determined that, in Caohai Lake, the annual concentrations of these variables ranged from 0.19–1.46, 6.11–16.79, 0.06–0.14 mg L−1, respectively. In addition, the annual concentrations of TP, TN and Chl a in Waihai Lake ranged between 0.13–0.20, 1.82–3.01, 0.04–0.09 mg L−1, respectively. Cluster Analysis (CA) classified the 10 monitoring sites into two groups (group A and group B) based on similarities of water quality characteristics. Our data revealed that the current status of water quality within Caohai Lake was much worse than that of Waihai Lake. Water quality was seriously degraded during the economic boom near the period of the "Eleventh Five-Year Plan" (2005–2010), and gradually improved from 2010 to 2012 because of the "standard emission directive to industry". The main factors that influenced the spatial and temporal changes to water quality were natural factors including lake evolution and regional characteristic as well as human factors such as pollution load into the lake and management strategies that were already adopted. Some activities and regulations were implemented to enhance the lake environment by controlling wastewater emissions and establishing regulations to protect the lakes in the Yunnan Province. However, problems with institutional fragmentation (horizontal and vertical), simple treatment methods, low-intensity investment in pollution control, and lack of meaningful endogenous pollution control strategies were still present in the lake management strategy. To solve these problems, suitable control measures are needed, especially considering the current old-age status of Dianchi Lake. The fundamental improvement of the water quality within Caohai Lake was dependent on the measures taken in the upper reaches of the Caohai Watershed, including further recovery of submerged plants, resource utilization by floating plants and the reinforcement of sediment disposal. Management strategies for endogenous pollution in Waihai Lake were mainly dependent on restocking algae-eating fish and the ecological restoration of macrophytes. In this way, the swamping trend and the ageing process that is occurring in Dianchi Lake can be stunted.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2406
Author(s):  
Zhenmei Liao ◽  
Nan Zang ◽  
Xuan Wang ◽  
Chunhui Li ◽  
Qiang Liu

Although water transfer projects can alleviate the water crisis, they may cause potential risks to water quality safety in receiving areas. The Miyun Reservoir in northern China, one of the receiving reservoirs of the world’s largest water transfer project (South-to-North Water Transfer Project, SNWTP), was selected as a case study. Considering its potential eutrophication trend, two machine learning models, i.e., the support vector machine (SVM) model and the random forest (RF) model, were built to investigate the trophic state by predicting the variations of chlorophyll-a (Chl-a) concentrations, the typical reflection of eutrophication, in the reservoir after the implementation of SNWTP. The results showed that compared with the SVM model, the RF model had higher prediction accuracy and more robust prediction ability with abnormal data, and was thus more suitable for predicting Chl-a concentration variations in the receiving reservoir. Additionally, short-term water transfer would not cause significant variations of Chl-a concentrations. After the project implementation, the impact of transferred water on the water quality of the receiving reservoir would have gradually increased. After a 10-year implementation, transferred water would cause a significant decline in the receiving reservoir’s water quality, and Chl-a concentrations would increase, especially from July to August. This led to a potential risk of trophic state change in the Miyun Reservoir and required further attention from managers. This study can provide prediction techniques and advice on water quality security management associated with eutrophication risks resulting from water transfer projects.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3640
Author(s):  
Md Mamun ◽  
Usman Atique ◽  
Kwang-Guk An

Water quality degradation is one of the most pressing environmental challenges in reservoirs around the world and makes the trophic status assessment of reservoirs essential for their restoration and sustainable use. The main aims of this study were to determine the spatial variations in water quality and trophic state of 204 South Korean reservoirs at different altitude levels. The results demonstrated mean total phosphorus (TP), chlorophyll-a (CHL-a), total suspended solids (TSS), organic matter indicators (chemical oxygen demand: COD; total organic carbon: TOC), water temperature (WT), and electrical conductivity (EC) remain consistently higher in the very lowland reservoirs (VLLR) than those in other altitudes, due to sedimentary or alluvial watersheds. The average TP and CHL-a levels in VLLR crossed the limit of the eutrophic water, symptomizing a moderate risk of cyanobacterial blooms. Empirical models were developed to identify critical variables controlling algal biomass and water clarity in reservoirs. The empirical analyses of all reservoir categories illustrated TP as a better predictor of CHL-a (R2 = 0.44, p < 0.01) than TN (R2 = 0.02, p < 0.05) as well as showed strong P-limitation based on TN:TP ratios. The algal productivity of VLLR (R2 = 0.61, p < 0.01) was limited by phosphorus, while highland reservoirs (HLR) were phosphorus (R2 = 0.23, p < 0.03) and light-limited (R2 = 0.31, p < 0.01). However, TSS showed a highly significant influence on water clarity compared to TP and algal CHL-a in all reservoirs. TP and TSS explained 47% and 34% of the variance in non-algal turbidity (NAT) in HLR. In contrast, the TP and TSS variances were 18% and 29% in midland reservoirs (MLR) and 32% and 20% in LLR. The trophic state index (TSI) of selected reservoirs varied between mesotrophic to eutrophic states as per TSI (TP), TSI (CHL-a), and TSI (SD). Mean TSI (CHL-a) indicated all reservoirs as eutrophic. Trophic state index deviation (TSID) assessment also complemented the phosphorus limitation characterized by the blue-green algae (BGA) domination in all reservoirs. Overall, reservoirs at varying altitudes reflect the multiplying impacts of anthropogenic factors on water quality, which can provide valuable insights into reservoir water quality management.


2014 ◽  
Vol 522-524 ◽  
pp. 12-20
Author(s):  
Wan Min Ni ◽  
Jiang Ying Zhang ◽  
Teng Da Ding ◽  
Jia Guo Qi

The objective of this research is to construct an efficient way of monitoring water quality and assessing trophic state using remote sensing techniques in Qinshan Lake of Hangzhou, China. Two Landsat ETM+ images were acquired and simultaneous in situ measurements, sampling and analysis were conducted. Results of the study indicated that the ratio of ETM+1/ETM+3 was the most effective single band in estimating chlorophyll-a (Chl-a), followed by normalized ratio vegetation index (NRVI). Two multiple regression models with determination coefficients were further constructed between logarithmically transformed Chl-a and the combination of ETM+1/ETM+3, ETM+2/ETM+3, and ETM+3/ETM+4 of ten sample sites. The resulting models, Log (Chl-a)=1.65 + 0.87*(ETM+1 / ETM+3) 3.39*(ETM+2 / ETM+3) + 0.89*(ETM+3 / ETM+4), and Log (Chl-a)=2.94 1.37*(ETM+1 / ETM+3) + 0.40*(ETM+2 / ETM+3) 0.20*(ETM+3 / ETM+4), both showed strong ability to evaluate the distribution of Chl-a, with R2 of 0.72 and 0.92, respectively. Then two trophic state maps generated for Qinshan Lake using this model could identify zones with a higher potential for eutrophication, which turned out to be an appropriate method for synoptic monitoring of water quality in lakes. Similar modeling can be made for any given subtropical lake, to provide rapid and long term assessment of water quality and also useful information for decision making.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3360
Author(s):  
Aimin Hao ◽  
Sohei Kobayashi ◽  
Dong Xia ◽  
Qi Mi ◽  
Ning Yan ◽  
...  

Surface aerators have often been introduced in urban ponds for esthetics, but their roles in remediating water quality are less understood. Effects of surface aerators on controlling eutrophication were examined in two urban ponds, in which anaerobic odors and cyanobacterial blooms had occurred and several aerators had been installed. In one of the ponds, a dramatic improvement in dissolved oxygen (DO) (from 1.8 to 8.1 mg L−1) and total phosphorus (TP) (from 1.6 to 0.4 mg L−1) was evident based on the comparison before and after the aeration. Although cyano-bloom did not occur, phytoplankton was dominated by cyanobacteria Microcystis species in both periods. Chlorophyll a (Chl-a) increased (from 29 to 51 μg L−1) and water transparency decreased (from 81 to 27 cm) after the aeration. In the other pond with an irregular shape, water quality was monitored two years after the installation to examine seasonal variation in trophic state and its spatial variation associated with aerator distribution. The water was mixed vertically well for the whole pond, as indicated by small surface-to-bottom differences in temperature. DO decreased in summer after rainfall but was always >5.7 mg L−1. Total nitrogen (TN) and TP were 0.8–2.3 and 0.03–0.07 mg L−1, respectively, and no cyano-blooms were observed across sites throughout the year. Phytoplankton was dominated by green algae and diatom species, which may be favored by the lower phosphorus level of the pond. Chl-a was higher and transparency was lower in the north side, which had more aerators and less shade from trees and buildings. These results suggest that surface aerators increased DO by vertical and horizontal mixing of water, reduced phosphorus release from sediment, and prevented cyano-bloom occurrence, but they did not improve Chl-a level and transparency. Rather, aeration can promote algal growth, and thus, additional purifying measures such as filtration and contact oxidation are required to further improve the trophic state of these ponds.


2014 ◽  
Vol 18 (4) ◽  
pp. 1493-1502 ◽  
Author(s):  
T. Zhang ◽  
W. H. Zeng ◽  
S. R. Wang ◽  
Z. K. Ni

Abstract. Temporal and spatial changes to the water quality of Dianchi Lake in southwest China were investigated using monthly monitoring data from 2005 to 2012. Dianchi Lake is divided into two parts, Caohai Lake and Waihai Lake, by a man-made dike. Caohai Lake lies at the north of Dianchi Lake, while Waihai Lake is the main water body of Dianchi Lake and accounts for 96.7% of the whole area of the lake. Based on the analysis of total phosphorus (TP), total nitrogen (TN), and chlorophyll a (Chl a) concentrations, it was determined that, in Caohai Lake, the annual concentrations of these variables ranged from 0.19–1.46 mg L−1, 6.11–16.79 mg L−1, 0.06–0.14 mg L−1, respectively. In addition, the annual concentrations of TP, TN and Chl a in Waihai Lake ranged between 0.13 and 0.20 mg L−1, 1.82 and 3.01 mg L−1, and 0.04 and 0.09 mg L−1, respectively. Cluster analysis (CA) classified the 10 monitoring sites into two clusters (cluster A and cluster B) based on similarities of water quality characteristics. Our data revealed that the current status of water quality within Caohai Lake was much worse than that of Waihai Lake. Water quality was seriously degraded during the economic boom near the period of the "Eleventh Five-Year Plan" (2005–2010), and gradually improved from 2010 to 2012 because of the "standard emission directive to industry". The main factors that influenced the spatial and temporal changes to water quality were natural factors including lake evolution and regional characteristic as well as human factors such as pollution load into the lake and management strategies that were already adopted. Some activities and regulations were implemented to enhance the lake environment by controlling wastewater emissions and establishing regulations to protect the lakes in the Yunnan Province. However, problems with institutional fragmentation (horizontal and vertical), simple treatment methods, low-intensity investment in pollution control, and lack of meaningful endogenous pollution control strategies were still present in the lake management strategy. To solve these problems, suitable control measures are needed, especially considering the current old-age status of Dianchi Lake. The fundamental improvement of the water quality within Caohai Lake was dependent on the measures taken in the upper reaches of the Caohai Watershed, including further recovery of submerged plants, resource utilization by floating plants and the reinforcement of sediment disposal. Management strategies for endogenous pollution in Waihai Lake were mainly dependent on restocking algae-eating fish and the ecological restoration of macrophytes. In this way, the swamping trend and the ageing process that is occurring in Dianchi Lake can be stunted. And the management strategies would be a contribution to the management of water conflicts between mankind and ecosystems in similar lakes.


Author(s):  
Namsrai Jargal ◽  
Ho-Seong Lee ◽  
Kwang-Guk An

Water quality degradation is one of the major problems with artificial lakes in estuaries. Long-term spatiotemporal patterns of water quality in a South Korean estuarine reservoir were analyzed using seasonal datasets from 2002 to 2020, and some functional changes in relations of trophic state variables due to the construction of serial weirs in the upper river were also investigated. A total of 19 water quality parameters were used for the study, including indicators of organic matter, nutrients, suspended solids, water clarity, and fecal pollution. In addition, chlorophyll-a (CHL-a) was used to assess algal biomass. An empirical regression model, trophic state index deviation (TSID), and principal component analysis (PCA) were applied. Longitudinal fluctuations in nutrients, organic matter, sestonic CHL-a, and suspended solids were found along the axis of the riverine (Rz), transition (Tz), and lacustrine zones (Lz). The degradation of water quality was seasonally caused by resuspension of sediments, monsoon input due to rainfall inflow, and intensity of Asian monsoon, and was also related to intensive anthropic activities within the catchment. The empirical model and PCA showed that light availability was directly controlled by non-algal turbidity, which was a more important regulator of CHL-a than total nitrogen (TN) and total phosphorus (TP). The TSID supported our hypothesis on the non-algal turbidity. We also found that the construction of serial upper weirs influenced nutrient regime, TSS, CHL-a level, and trophic state in the estuarine reservoir, resulting in lower TP and TN but high CHL-a and high TN/TP ratios. The proportions of both dissolved color clay particles and blue-green algae in the TSID additionally increased. Overall, the long-term patterns of nutrients, suspended solids, and algal biomass changed due to seasonal runoff, turnover time, and reservoir zones along with anthropic impacts of the upper weir constructions, resulting in changes in trophic state variables and their mutual relations in the estuarine reservoir.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (3) ◽  
pp. 14-20 ◽  
Author(s):  
YUAN-SHING PERNG ◽  
EUGENE I-CHEN WANG ◽  
SHIH-TSUNG YU ◽  
AN-YI CHANG

Trends toward closure of white water recirculation loops in papermaking often lead to a need for system modifications. We conducted a pilot-scale study using pulsed electrocoagulation technology to treat the effluent of an old corrugated containerboard (OCC)-based paper mill in order to evaluate its treatment performance. The operating variables were a current density of 0–240 A/m2, a hydraulic retention time (HRT) of 8–16 min, and a coagulant (anionic polyacrylamide) dosage of 0–22 mg/L. Water quality indicators investigated were electrical con-ductivity, suspended solids (SS), chemical oxygen demand (COD), and true color. The results were encouraging. Under the operating conditions without coagulant addition, the highest removals for conductivity, SS, COD, and true color were 39.8%, 85.7%, 70.5%, and 97.1%, respectively (with an HRT of 16 min). The use of a coagulant enhanced the removal of both conductivity and COD. With an optimal dosage of 20 mg/L and a shortened HRT of 10 min, the highest removal achieved for the four water quality indicators were 37.7%, 88.7%, 74.2%, and 91.7%, respectively. The water qualities thus attained should be adequate to allow reuse of a substantial portion of the treated effluent as process water makeup in papermaking.


Sign in / Sign up

Export Citation Format

Share Document