scholarly journals An Electrochemical Approach for the Selective Detection of Cancer Metabolic Creatine Biomarker with Porous Nano-Formulated CMNO Materials Decorated Glassy Carbon Electrode

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7060
Author(s):  
Mohammed M. Rahman ◽  
Md. M. Alam ◽  
Abdullah M. Asiri ◽  
Firoz. A. D. M. Opo

The facile wet-chemical technique was used to prepare the low-dimensional nano-formulated porous mixed metal oxide nanomaterials (CuO.Mn2O3.NiO; CMNO NMs) in an alkaline medium at low temperature. Detailed structural, morphological, crystalline, and functional characterization of CMNO NMs were performed by X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDS) analyses. An efficient and selective creatine (CA) sensor probe was fabricated by using CMNO NMs decorated onto glassy carbon electrode (GCE) as CMNO NMs/GCE by using Nafion adhesive (5% suspension in ethanol). The relation of current versus the concentration of CA was plotted to draw a calibration curve of the CMNO NMs/GCE sensor probe, which was found to have a very linear value (r2 = 0.9995) over a large dynamic range (LDR: 0.1 nM~0.1 mM) for selective CA detection. The slope of LDR by considering the active surface area of GCE (0.0316 cm2) was applied to estimate the sensor sensitivity (14.6308 µAµM−1 cm−2). Moreover, the detection limit (21.63 ± 0.05 pM) of CMNO MNs modified GCE was calculated from the signal/noise (S/N) ratio at 3. As a CA sensor probe, it exhibited long-term stability, good reproducibility, and fast response time in the detection of CA by electrochemical approach. Therefore, this research technique is introduced as a promising platform to develop an efficient sensor probe for cancer metabolic biomarker by using nano-formulated mixed metal oxides for biochemical as well as biomedical research for the safety of health care fields.

2020 ◽  
Vol 44 (46) ◽  
pp. 20285-20293
Author(s):  
Mohammed M. Rahman ◽  
M. M. Alam ◽  
Abdullah M. Asiri ◽  
Jamal Uddin

Selective and sensitive 4-methoxyphenol chemical sensor was developed with a co-doped CeO2–ZrO2 nanocomposite modified glassy carbon electrode as a sensor probe by electrochemical approach for the safety of environmental and ecological fields in broad scales.


RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 44641-44653
Author(s):  
M. M. Alam ◽  
Abdullah M. Asiri ◽  
M. T. Uddin ◽  
Mohammed M. Rahman ◽  
M. A. Islam

In situ fabrication of a sensitive electrochemical toluene sensor probe using wet-chemically prepared ternary ZnO/MgO/Cr2O3 nanofiber (NF)-decorated glassy carbon electrode (GCE) with Nafion adhesive was the approach of this study.


2021 ◽  
Author(s):  
Md Mahmud Alam ◽  
M.T. Uddin ◽  
Mohammed M. Rahman ◽  
Abdullah M. Asiri ◽  
M.A. Islam

Abstract The 4-NPHyd (4-nitrophenylhydrazine) electrochemical sensor assembled using wet-chemically prepared ZnO/SnO2 nanoparticle (NPs) decorated a glassy carbon electrode (GCE) with conductive Nafion binder. The synthesized NPs characterized by XPS, ESEM, EDS, and XRD analysis. The calibration of the proposed sensor obtained from current versus concentration of 4-NPHyd found linear over a concentration (0.1nM~0.01mM) of 4-NPHyd, which denoted as the dynamic range (LDR) for detection of 4-NPHyd. The 4-NPHyd sensor sensitivity calculated using the LDR slope considering the active surface of GCE (0.0316 cm2), which is equal to be 7.6930 µAµM-1cm-2, an appreciable value. The detection limit (LOD) at signal/noise (S/N=3) estimated, and outstanding lower value at 94.63±4.73 pM perceived. The analytical parameters such as reproducibility, long-term performing ability and response time are found as appreciable. Finally, the projected sensor shows exceptional performances in the detection of 4-NPHyd in environmental samples.


2018 ◽  
Vol 42 (2) ◽  
pp. 1169-1180 ◽  
Author(s):  
Mohammad Musarraf Hussain ◽  
Abdullah M. Asiri ◽  
Muhammad Nadeem Arshad ◽  
Mohammed M. Rahman

A thin-layer of (E)-N′-methoxybenzylidenebenzenesulfonohydrazide (MBBSH) was fabricated by the deposition of MBBSH onto a smooth glassy carbon electrode with nafion binder for the sensitive and selective Ga3+ sensor probe.


2017 ◽  
Vol 184 (7) ◽  
pp. 2123-2129 ◽  
Author(s):  
Mohammed M. Rahman ◽  
Valero G. Alfonso ◽  
Francisco Fabregat-Santiago ◽  
Juan Bisquert ◽  
Abdullah M. Asiri ◽  
...  

2018 ◽  
Vol 352 ◽  
pp. 225-231 ◽  
Author(s):  
Reda M. El-Shishtawy ◽  
Huda A. Al-Ghamdi ◽  
M.M. Alam ◽  
Zahra M. Al-amshany ◽  
Abdullah M. Asiri ◽  
...  

2007 ◽  
Vol 72 (9) ◽  
pp. 1177-1188 ◽  
Author(s):  
Xinhua Lin ◽  
Wei Li ◽  
Hong Yao ◽  
Yuanyuan Sun ◽  
Liying Huang ◽  
...  

A poly(Eriochrome Black T) chemically modified glassy carbon electrode modified with Eriochrome Black T was prepared by cyclic voltammetry. The modified electrode showed an excellent electrocatalytic activity in oxidation of noradrenaline (NA) and could separate its electrochemical responses from those of L-ascorbic acid (AA) and uric acid (UA). Differences of the oxidation peak potentials for NA-AA and UA-NA were about 150 mV. The responses to NA, AA and UA of the modified electrode are relatively independent. Using differential pulse voltammetry, the peak currents of NA at modified glassy carbon electrode increased linearly with the concentration of NA from 0.5 to 100 μmol l-1. The detection limit was 0.2 μmol l-1. With the modified electrode, UA could be selectively determined in the presence of AA. The method showing a wide linear dynamic range and excellent sensitivity was successfully applied to the determination of NA in pharmaceutical injections and various samples.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Riyaz Ahmad Dar ◽  
Gowhar Ahmad Naikoo ◽  
Ashwini Kumar Srivastava ◽  
Israr Ul Hassan ◽  
Shashi P. Karna ◽  
...  

AbstractGraphene: zinc oxide nanocomposite (GN:ZnO NC) platform was tried for the sensitive determination of para-nitrophenol (p-NP) through the electrochemical method. ZnO nanoparticles (NPs) were synthesized by the modified wet-chemical method where in potassium hydroxide and zinc nitrate were used as precursors and starch as a stabilizing agent. A green and facile approach was applied to synthesize GN:ZnO NC in which glucose was employed as a reductant to reduce graphene-oxide to graphene in the presence of ZnO NPs. The synthesized NC was characterized using scanning and high-resolution transmission electron microscopy, energy dispersive x-ray analysis, X-ray diffraction and Raman spectroscopic techniques to examine the crystal phase, crystallinity, morphology, chemical composition and phase structure. GN:ZnO NC layer deposited over the glassy carbon electrode (GCE) was initially probed for its electrochemical performance using the standard 1 mM K3[Fe(CN)6] model complex. GN:ZnO NC modified GCE was monitored based on p-NP concentration. An enhanced current response was observed in 0.1 M phosphate buffer of pH 6.8 for the determination of p-NP in a linear working range of 0.09 × 10–6 to 21.80 × 10–6 M with a lower detection limit of 8.8 × 10–9 M employing square wave adsorptive stripping voltammetric technique at a deposition-potential and deposition-time of − 1.0 V and 300 s, respectively. This electrochemical sensor displayed very high specificity for p-NP with no observed interference from some other possible interfering substances such as 2, 4-di-NP, ortho-NP, and meta-NP. The developed strategy was useful for sensitive detection of p-NP quantity in canals/rivers and ground H2O samples with good recoveries.


Sign in / Sign up

Export Citation Format

Share Document