scholarly journals Guidance for Autonomous Underwater Vehicles in Confined Semistructured Environments

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7237
Author(s):  
Zorana Milosevic ◽  
Ramon A. Suarez Fernandez ◽  
Sergio Dominguez ◽  
Claudio Rossi

In this work, we present the design, implementation, and testing of a guidance system for the UX-1 robot, a novel spherical underwater vehicle designed to explore and map flooded underground mines. For this purpose, it needs to navigate completely autonomously, as no communications are possible, in the 3D networks of tunnels of semistructured but unknown environments and gather various geoscientific data. First, the overall design concepts of the robot are presented. Then, the guidance system and its subsystems are explained. Finally, the system’s validation and integration with the rest of the UX-1 robot systems are presented. A series of experimental tests following the software-in-the-loop and the hardware-in-the-loop paradigms have been carried out, designed to simulate as closely as possible navigation in mine tunnel environments. The results obtained in these tests demonstrate the effectiveness of the guidance system and its proper integration with the rest of the systems of the robot, and validate the abilities of the UX-1 platform to perform complex missions in flooded mine environments.

2021 ◽  
Vol 9 (3) ◽  
pp. 277
Author(s):  
Isaac Segovia Ramírez ◽  
Pedro José Bernalte Sánchez ◽  
Mayorkinos Papaelias ◽  
Fausto Pedro García Márquez

Submarine inspections and surveys require underwater vehicles to operate in deep waters efficiently, safely and reliably. Autonomous Underwater Vehicles employing advanced navigation and control systems present several advantages. Robust control algorithms and novel improvements in positioning and navigation are needed to optimize underwater operations. This paper proposes a new general formulation of this problem together with a basic approach for the management of deep underwater operations. This approach considers the field of view and the operational requirements as a fundamental input in the development of the trajectory in the autonomous guidance system. The constraints and involved variables are also defined, providing more accurate modelling compared with traditional formulations of the positioning system. Different case studies are presented based on commercial underwater cameras/sonars, analysing the influence of the main variables in the measurement process to obtain optimal resolution results. The application of this approach in autonomous underwater operations ensures suitable data acquisition processes according to the payload installed onboard.


2018 ◽  
Vol 73 ◽  
pp. 149-159 ◽  
Author(s):  
Bala Naga Jyothi Vandavasi ◽  
Umapathy Arunachalam ◽  
Vedachalam Narayanaswamy ◽  
Ramesh Raju ◽  
Doss Prakash Vittal ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 682 ◽  
Author(s):  
Shilin Peng ◽  
Jingbiao Liu ◽  
Junhao Wu ◽  
Chong Li ◽  
Benkun Liu ◽  
...  

As important observational platforms for the Smart Ocean concept, autonomous underwater vehicles (AUVs) that perform long-term observation in fleets are beneficial because they provide large-scale sampling data with a sufficient spatiotemporal resolution. Therefore, a large number of low-cost micro AUVs with docking capability for power recharge and data transmission are essential. This study designed a low-cost electromagnetic docking guidance (EMDG) system for micro AUVs. The EMDG system is composed of a transmitter coil located on the dock and a three-axial search coil magnetometer acting as a receiver. The search coil magnetometer was optimized for small sizes while maintaining sufficient sensitivity. The signal conditioning and processing subsystem was designed to calculate the deflection angle (β) for docking guidance. Underwater docking tests showed that the system can detect the electromagnetic signal and successfully guide AUV docking. The AUV can still perform docking in extreme positions, which cannot be realized through normal optical or acoustic guidance. This study is the first to focus on the EM guidance system for low-cost micro AUVs. The search coil sensor in the AUV is inexpensive and compact so that the system can be equipped on a wide range of AUVs.


2003 ◽  
Vol 56 (1) ◽  
pp. 15-29 ◽  
Author(s):  
W. Naeem ◽  
R. Sutton ◽  
S. M. Ahmad ◽  
R. S. Burns

The main problem in bringing autonomy to any vehicle lies in the design of a suitable guidance law. For truly autonomous operation, the vehicle needs to have a reliable Navigation, Guidance and Control (NGC) system of which the guidance system is the key element that generates suitable trajectories to be followed. In this review paper, various guidance laws found in the literature and their relevance to autonomous underwater vehicles (AUVs) are discussed. Since existing guidance laws for underwater vehicles have emulated from tactical airborne missile systems, a number of approaches for the missile guidance systems are considered. Finally, potential guidance strategies for AUVs are proposed.


Author(s):  
Francesco Fanelli ◽  
Niccolò Monni ◽  
Nicola Palma ◽  
Alessandro Ridolfi

Autonomous underwater vehicles localization and navigation are challenging due to the lack of Global Positioning System underwater: alternative techniques have then to be used in order to measure the position of the vehicle. To this aim, sensor fusion methods based on acoustic positioning systems are often exploited. This article faces the study and the improvement of the localization of an underwater target through an ultra short baseline–aided buoy built by the Mechatronics and Dynamic Modelling Laboratory of the University of Florence. Such a buoy relies on an ultra short baseline device for the localization and is aided by a proper sensor set in order to compensate variations in its pose. First, a study of the underwater localization based on the ultra short baseline technique is provided. The measurement errors entailed by the buoy motion are then analyzed and preliminarily compensated, exploiting linear least squares methods. Subsequently, filtering techniques are considered with the aim to further increase the accuracy of the ultra short baseline measurements. Due to the nonlinearities of the sensors characteristics, extended Kalman filter has been used, with different models for stationary and moving targets. The solutions proposed have been validated through experimental tests conducted with MArine Robotic Tool for Archaeology autonomous underwater vehicles built by the Mechatronics and Dynamic Modelling Laboratory. The results evidence an improved vehicle localization, suggesting interesting future developments concerning both mechanical and computational solutions.


2014 ◽  
Vol 48 (6) ◽  
pp. 112-124 ◽  
Author(s):  
Shilin Peng ◽  
Canjun Yang ◽  
Shuangshuang Fan ◽  
Shaoyong Zhang ◽  
Pinfu Wang ◽  
...  

AbstractThe development of a novel type of hybrid underwater glider that combines the advantages of buoyancy-driven gliders and propeller-driven autonomous underwater vehicles has recently received considerable interest. However, few studies have considered a hybrid glider with docking capability, which would expand the glider's applications. This study presents a hybrid glider with a rotatable thruster for realizing underwater docking. A tailored dynamic model of the hybrid glider is derived, and the motion performance is evaluated by simulations and experimental tests. A comparison between the experiments and simulations shows that results are in agreement, thus indicating the feasibility of the dynamic model and the accuracy of the hydrodynamic coefficients. In addition, the hybrid glider open-loop docking tests validate the feasibility of the mechanical docking system. Moreover, the experimental tests also validate the glider's different functions and indicate that the hybrid glider with rotatable thruster has high maneuverability even at low speeds. Thus, this type of hybrid glider can be used for underwater docking.


2019 ◽  
Vol 9 (17) ◽  
pp. 3526 ◽  
Author(s):  
Diego Centelles ◽  
Antonio Soriano-Asensi ◽  
José Vicente Martí ◽  
Raúl Marín ◽  
Pedro J. Sanz

The increasing number of autonomous underwater vehicles (AUVs) cooperating in underwater operations has motivated the use of wireless communications. Their modeling can minimize the impact of their limited performance in real-time robotic interventions. However, robotic frameworks hardly ever consider the communications, and network simulators are not suitable for HIL experiments. In this work, the UWSim-NET is presented, an open source tool to simulate the impact of communications in underwater robotics. It gathers the benefits of NS3 in modeling communication networks with those of the underwater robot simulator (UWSim) and the robot operating system (ROS) in modeling robotic systems. This article also shows the results of three experiments that demonstrate the capabilities of UWSim-NET in modeling radio frequency (RF) and acoustic links in underwater scenarios. It also permits evaluating several MAC protocols such as additive links online Hawaii area (ALOHA), slotted floor acquisition multiple access (S-FAMA) and user defined protocols. A third experiment demonstrated the excellent capabilities of UWSim-NET in conducting hardware in the loop (HIL) experiments.


Sign in / Sign up

Export Citation Format

Share Document