scholarly journals Generating Road Networks for Old Downtown Areas Based on Crowd-Sourced Vehicle Trajectories

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 235
Author(s):  
Caili Zhang ◽  
Yali Li ◽  
Longgang Xiang ◽  
Fengwei Jiao ◽  
Chenhao Wu ◽  
...  

With the popularity of portable positioning devices, crowd-sourced trajectory data have attracted widespread attention, and led to many research breakthroughs in the field of road network extraction. However, it is still a challenging task to detect the road networks of old downtown areas with complex network layouts from high noise, low frequency, and uneven distribution trajectories. Therefore, this paper focuses on the old downtown area and provides a novel intersection-first approach to generate road networks based on low quality, crowd-sourced vehicle trajectories. For intersection detection, virtual representative points with distance constraints are detected, and the clustering by fast search and find of density peaks (CFDP) algorithm is introduced to overcome low frequency features of trajectories, and improve the positioning accuracy of intersections. For link extraction, an identification strategy based on the Delaunay triangulation network is developed to quickly filter out false links between large-scale intersections. In order to alleviate the curse of sparse and uneven data distribution, an adaptive link-fitting scheme, considering feature differences, is further designed to derive link centerlines. The experiment results show that the method proposed in this paper preforms remarkably better in both intersection detection and road network generation for old downtown areas.

2019 ◽  
Vol 8 (9) ◽  
pp. 374 ◽  
Author(s):  
Li ◽  
Li ◽  
Li

Many studies have utilized global navigation satellite system (such as global positioning system (GPS)) trajectories in order to successfully infer road networks because such data can reveal the geometry and development of a road network, can be obtained in a timely manner, and updated on a low budget. Unfortunately, existing studies for inferring road networks from vehicle traces suffer from low accuracy, especially in dense urban regions and locations with complex structures, such as roundabouts, overpasses, and complex intersections. This study presents a novel two-stage approach for inferring road networks from trajectory points and capturing road geometry with better accuracy. First, a lane structure-aware filter is proposed to cluster vehicle trajectories influenced by high noise and outliers in order to reveal the continuous structure points of lane curves from massive trajectory points. Second, a road tracing operator is utilized to segment the road network geometry by inserting new vertices and segments to a vigorous vertex in the heading of the structure points that are extracted in the first step. Experimental results demonstrate the increased accuracy of the extracted roads and show that the proposed method exhibits strong robustness to noise and various sampling rates.


Author(s):  
Qibin Zhou ◽  
Qingang Su ◽  
Dingyu Yang

Real-time traffic estimation focuses on predicting the travel time of one travel path, which is capable of helping drivers selecting an appropriate or favor path. Statistical analysis or neural network approaches have been explored to predict the travel time on a massive volume of traffic data. These methods need to be updated when the traffic varies frequently, which incurs tremendous overhead. We build a system RealTER⁢e⁢a⁢l⁢T⁢E, implemented on a popular and open source streaming system StormS⁢t⁢o⁢r⁢m to quickly deal with high speed trajectory data. In RealTER⁢e⁢a⁢l⁢T⁢E, we propose a locality-sensitive partition and deployment algorithm for a large road network. A histogram estimation approach is adopted to predict the traffic. This approach is general and able to be incremental updated in parallel. Extensive experiments are conducted on six real road networks and the results illustrate RealTE achieves higher throughput and lower prediction error than existing methods. The runtime of a traffic estimation is less than 11 seconds over a large road network and it takes only 619619 microseconds for model updates.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246062
Author(s):  
Renátó Besenczi ◽  
Norbert Bátfai ◽  
Péter Jeszenszky ◽  
Roland Major ◽  
Fanny Monori ◽  
...  

Modeling and simulating movement of vehicles in established transportation infrastructures, especially in large urban road networks is an important task. It helps in understanding and handling traffic problems, optimizing traffic regulations and adapting the traffic management in real time for unexpected disaster events. A mathematically rigorous stochastic model that can be used for traffic analysis was proposed earlier by other researchers which is based on an interplay between graph and Markov chain theories. This model provides a transition probability matrix which describes the traffic’s dynamic with its unique stationary distribution of the vehicles on the road network. In this paper, a new parametrization is presented for this model by introducing the concept of two-dimensional stationary distribution which can handle the traffic’s dynamic together with the vehicles’ distribution. In addition, the weighted least squares estimation method is applied for estimating this new parameter matrix using trajectory data. In a case study, we apply our method on the Taxi Trajectory Prediction dataset and road network data from the OpenStreetMap project, both available publicly. To test our approach, we have implemented the proposed model in software. We have run simulations in medium and large scales and both the model and estimation procedure, based on artificial and real datasets, have been proved satisfactory and superior to the frequency based maximum likelihood method. In a real application, we have unfolded a stationary distribution on the map graph of Porto, based on the dataset. The approach described here combines techniques which, when used together to analyze traffic on large road networks, has not previously been reported.


2013 ◽  
Vol 10 (4) ◽  
pp. 1546-1552
Author(s):  
Supreet Kaur ◽  
Seema Baghla

Road networks play an important role in a number of geospatial applications, such as cartographic, infrastructure planning and traffic routing software. Automatic and semi-automatic road network extraction techniques have significantly increased the extraction rate of road networks. The road detection performance is a critically affected by the noise or low frequency images. Road edge detection plays an significant role to detect the direction of the road and the specific location of obstacles, size and speed of obstacles in the road. In this paper, several road detection techniques are theoretically analyzed, and a new road detection technique is proposed using median filter. By comparing it with some well known techniques it is found that there exist many gaps in the techniques proposed so far.  By comparing the proposed algorithm with proposed it is proved that the proposed algorithm does not provide artifacts was quite more in old tewchniques.


Author(s):  
Danyang Sun ◽  
Fabien Leurent ◽  
Xiaoyan Xie

In this study we discovered significant places in individual mobility by exploring vehicle trajectories from floating car data. The objective was to detect the geo-locations of significant places and further identify their functional types. Vehicle trajectories were first segmented into meaningful trips to recover corresponding stay points. A customized density-based clustering approach was implemented to cluster stay points into places and determine the significant ones for each individual vehicle. Next, a two-level hierarchy method was developed to identify the place types, which firstly identified the activity types by mixture model clustering on stay characteristics, and secondly discovered the place types by assessing their profiles of activity composition and frequentation. An applicational case study was conducted in the Paris region. As a result, five types of significant places were identified, including home place, work place, and three other types of secondary places. The results of the proposed method were compared with those from a commonly used rule-based identification, and showed a highly consistent matching on place recognition for the same vehicles. Overall, this study provides a large-scale instance of the study of human mobility anchors by mining passive trajectory data without prior knowledge. Such mined information can further help to understand human mobility regularities and facilitate city planning.


Author(s):  
Francisco Arcas-Tunez ◽  
Fernando Terroso-Saenz

The development of Road Information Acquisition Systems (RIASs) based on the Mobile Crowdsensing (MCS) paradigm has been widely studied for the last years. In that sense, most of the existing MCS-based RIASs focus on urban road networks and assume a car-based scenario. However, there exist a scarcity of approaches that pay attention to rural and country road networks. In that sense, forest paths are used for a wide range of recreational and sport activities by many different people and they can be also affected by different problems or obstacles blocking them. As a result, this work introduces SAMARITAN, a framework for rural-road network monitoring based on MCS. SAMARITAN analyzes the spatio-temporal trajectories from cyclists extracted from the fitness application Strava so as to uncover potential obstacles in a target road network. The framework has been evaluated in a real-world network of forest paths in the city of Cieza (Spain) showing quite promising results.


2018 ◽  
Vol 7 (12) ◽  
pp. 472 ◽  
Author(s):  
Bo Wan ◽  
Lin Yang ◽  
Shunping Zhou ◽  
Run Wang ◽  
Dezhi Wang ◽  
...  

The road-network matching method is an effective tool for map integration, fusion, and update. Due to the complexity of road networks in the real world, matching methods often contain a series of complicated processes to identify homonymous roads and deal with their intricate relationship. However, traditional road-network matching algorithms, which are mainly central processing unit (CPU)-based approaches, may have performance bottleneck problems when facing big data. We developed a particle-swarm optimization (PSO)-based parallel road-network matching method on graphics-processing unit (GPU). Based on the characteristics of the two main stages (similarity computation and matching-relationship identification), data-partition and task-partition strategies were utilized, respectively, to fully use GPU threads. Experiments were conducted on datasets with 14 different scales. Results indicate that the parallel PSO-based matching algorithm (PSOM) could correctly identify most matching relationships with an average accuracy of 84.44%, which was at the same level as the accuracy of a benchmark—the probability-relaxation-matching (PRM) method. The PSOM approach significantly reduced the road-network matching time in dealing with large amounts of data in comparison with the PRM method. This paper provides a common parallel algorithm framework for road-network matching algorithms and contributes to integration and update of large-scale road-networks.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Feng Wen ◽  
Xingqiao Wang ◽  
Xiaowei Xu

In modern society, route guidance problems can be found everywhere. Reinforcement learning models can be normally used to solve such kind of problems; particularly, Sarsa Learning is suitable for tackling with dynamic route guidance problem. But how to solve the large state space of digital road network is a challenge for Sarsa Learning, which is very common due to the large scale of modern road network. In this study, the hierarchical Sarsa learning based route guidance algorithm (HSLRG) is proposed to guide vehicles in the large scale road network, in which, by decomposing the route guidance task, the state space of route guidance system can be reduced. In this method, Multilevel Network method is introduced, and Differential Evolution based clustering method is adopted to optimize the multilevel road network structure. The proposed algorithm was simulated with several different scale road networks; the experiment results show that, in the large scale road networks, the proposed method can greatly enhance the efficiency of the dynamic route guidance system.


Sign in / Sign up

Export Citation Format

Share Document