scholarly journals LoRaWANSim: A Flexible Simulator for LoRaWAN Networks

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 695
Author(s):  
Riccardo Marini ◽  
Konstantin Mikhaylov ◽  
Gianni Pasolini ◽  
Chiara Buratti

Among the low power wide area network communication protocols for large scale Internet of Things, LoRaWAN is considered one of the most promising, owing to its flexibility and energy-saving capabilities. For these reasons, during recent years, the scientific community has invested efforts into assessing the fundamental performance limits and understanding the trade-offs between the parameters and performance of LoRaWAN communication for different application scenarios. However, this task cannot be effectively accomplished utilizing only analytical methods, and precise network simulators are needed. To that end, this paper presents LoRaWANSim, a LoRaWAN simulator implemented in MATLAB, developed to characterize the behavior of LoRaWAN networks, accounting for physical, medium access control and network aspects. In particular, since many simulators described in the literature are deployed for specific research purposes, they are usually oversimplified and hold a number of assumptions affecting the accuracy of their results. In contrast, our simulator has been developed for the sake of completeness and it is oriented towards an accurate representation of the LoRaWAN at the different layers. After a detailed description of the simulator, we report a validation of the simulator itself and we then conclude by presenting some results of its use revealing notable and non-intuitive trade-offs present in LoRaWAN. Such simulator will be made available via open access to the research community.

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1435 ◽  
Author(s):  
Lorenzo Germani ◽  
Vanni Mecarelli ◽  
Giuseppe Baruffa ◽  
Luca Rugini ◽  
Fabrizio Frescura

The Internet of Things (IoT) architecture is quickly becoming popular even outside of its originating scenario of home automation. This paper reports the design, implementation, and performance of an IoT hardware and software architecture conceived for the continuous monitoring of livestock located in barns and during grazing. We have adopted the LoRa low power wide area network (LPWAN) technology to cover the diverse environments, and a suitable configuration of web services to perform data storage, analysis, and visualization. Since the LoRa LPWAN (LoRaWAN) medium access control (MAC) layer does not provide a listen-before-talk (LBT) mechanism, we propose a custom MAC layer with LBT-based carrier-sense multiple access with collision avoidance (CSMA/CA). The devised system has been implemented using off-the-shelf hardware, and its performance has also been estimated with the help of a C++ event-based simulator. The preliminary results of our HW implementation on the field confirm the stability of the conceived system and its reliability.


Author(s):  
Hongqiang Li ◽  
Dongyan Zhao ◽  
Xiaoke Tang ◽  
Jie Gan ◽  
Xu Zhao ◽  
...  

With the rapid development of IoT technology in recent years, higher requirements have been put forward for wireless communication technology. Low Power Wide Area Network (LPWAN) technology is emerging rapidly, the technology is characterized by low power consumption, low bandwidth, long-distance, and a large number of connections, and is specifically designed for Internet of Things applications. LoRa (Low Power Long Range Transceiver), as a typical representative of LPWAN technology, has been widely concerned and studied. This paper analyzes the performance of LoRa modulation in the tree topology network and analyzes the performance of LoRa modulation in the imperfect environment for point-to-point communication and multipoint-to-point communication. From theoretical analysis and performance simulation, it can be seen that the influence of frequency offset or multipath fading on LoRa signal is very obvious. However, when LoRa modulation is used for networking, multi-user interference will be introduced. Under the influence of many imperfect factors, the signal receiver performance of LoRa modulation will be difficult to guarantee. Because of these effects, Coordinated Multiple Points based on Timing Delay (DCoMP) is presented. Multiple nodes close to each other send the same data to the target node. Due to the inaccurate synchronization between nodes, there will be a certain relative delay when sending signals to the same target node. After the receiving node combines the signals of multiple nodes according to different relative delays, the reception performance of the signals can be improved. At the same time, the cooperative node can also actively adjust the signal sending time to improve the reception performance of the receiving node signal merging algorithm. LoRa modulation, by using DCoMP transmission, improves the reception of signals and thus the overall capacity of the system. Through the analysis of multipoint communication and single point communication, this paper is of great help to LoRa network deployment.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4273
Author(s):  
Jeferson Rodrigues Cotrim ◽  
João Henrique Kleinschmidt

The growth of the Internet of Things (IoT) led to the deployment of many applications that use wireless networks, like smart cities and smart agriculture. Low Power Wide Area Networks (LPWANs) meet many requirements of IoT, such as energy efficiency, low cost, large coverage area, and large-scale deployment. Long Range Wide Area Network (LoRaWAN) networks are one of the most studied and implemented LPWAN technologies, due to the facility to build private networks with an open standard. Typical LoRaWAN networks are single-hop in a star topology, composed of end-devices that transmit data directly to gateways. Recently, several studies proposed multihop LoRaWAN networks, thus forming wireless mesh networks. This article provides a review of the state-of-the-art multihop proposals for LoRaWAN. In addition, we carried out a comparative analysis and classification, considering technical characteristics, intermediate devices function, and network topologies. This paper also discusses open issues and future directions to realize the full potential of multihop networking. We hope to encourage other researchers to work on improving the performance of LoRaWAN mesh networks, with more theoretical and simulation analysis, as well as practical deployments.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3264 ◽  
Author(s):  
Loizos Kanaris ◽  
Charalampos Sergiou ◽  
Akis Kokkinis ◽  
Aris Pafitis ◽  
Nikos Antoniou ◽  
...  

Planning and deploying a functional large scale Wireless Sensor Network (WSN) or a Network of Internet of Things (IoTs) is a challenging task, especially in complex urban environments. A main network design bottleneck is the existence and/or correct usage of appropriate cross layer simulators that can generate realistic results for the scenario of interest. Existing network simulators tend to overlook the complexity of the physical radio propagation layer and consequently do not realistically simulate the main radio propagation conditions that take place in urban or suburban environments, thus passing inaccurate results between Open Systems Interconnection (OSI) layers. This work demonstrates through simulations and measurements that, by correctly passing physical information to higher layers, the overall simulation process produces more accurate results at the network layer. It is demonstrated that the resulting simulation methodology can be utilized to accomplish realistic wireless planning and performance analysis of the deployed nodes, with results that are very close to those of real test-beds, or actual WSN deployments.


2017 ◽  
Vol 26 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Wayne D. Gray

One hundred twenty years ago, the emergent field of experimental psychology debated whether plateaus of performance during training were real or not. Sixty years ago, the battle was over whether learning asymptoted or not. Thirty years ago, the research community was seized with concerns over stable plateaus at suboptimal performance levels among experts. Applied researchers viewed this as a systems problem and referred to it as the paradox of the active user. Basic researchers diagnosed this as a training problem and embraced deliberate practice. The concepts of plateaus and asymptotes and the distinction between the two are important as the questions asked and the means of overcoming one or the other differ. These questions have meaning as we inquire about the nature of performance limits in skilled behavior and the distinction between brain capacity and brain efficiency. This article brings phenomena that are hiding in the open to the attention of the research community in the hope that delineating the distinction between plateaus and asymptotes will help clarify the distinction between real versus “spurious limits” and advance theoretical debates regarding learning and performance.


Author(s):  
Aizat Faiz Ramli ◽  
Muhammad Ikram Shabry ◽  
Mohd Azlan Abu ◽  
Hafiz Basarudin

LoRaWAN is one of the leading Low power wide area network (LPWAN) LPWAN technologies that compete for the formation of big scale Internet of Things (IoT). It uses LoRa protocol to achieve long range, low bit rate and low power communication. Large scale LoRaWAN based IoT deployments can consist of battery powered sensor nodes. Therefore, the energy consumption and efficiency of these nodes are crucial factors that can influence the lifetime of the network. However, there is no coherent experimental based research which identifies the factors that influence the LoRa energy efficiency at various nodes density. In this paper, results on measuring the packet delivery ratio, packet loss, data rate and energy consumption ratio ECR to gauge the energy efficiency of LoRa devices at various nodes density are presented. It is shown that the ECR of LoRa is inversely proportional to the nodes density and that the ECR of the network is smaller at higher traffic indicating better network energy efficiency. It is also demonstrated that at high node density, spreading factor SF of 7 and 9 can improve the energy efficiency of the network by 5 and 3 times, respectively, compare to SF 11.


Author(s):  
Ala Khalifeh ◽  
Khaled Aldahdouh ◽  
Sahel Alouneh

Long Range Wide Area Network (LoRaWAN) is an emerging wireless technology that is expected to be widely deployed and implemented in several applications, especially with the promising widespread use of the Internet of Things (IoT) and its potential applications within the Fifth Generation (5G) communication technology. LoRaWAN consists of a number of nodes that monitors and senses the environment to collect specific data, and then sends the collected data to a remote monitoring device for further processing and decision-making. Energy consumption and security assurance are two vital factors needed to be optimized to ensure an efficient and reliable network operation and performance. To achieve that, each of LoRaWAN nodes can be configured by five transmission parameters, which are the spreading factor, carrier frequency, bandwidth, coding rate and transmission power. Choosing the best values of these parameters leads to enhancing the network deployment. In this paper, we shed the light to the security aspect in LoRaWAN network. Then, we introduced an algorithm that depends on the reinforcement learning approach to enable each node in the network to choose the best values of spreading factor and transmission power such that it leads to a lower energy consumption and higher packets’ delivery rate. The results of the simulation experiments of our proposed technique showed a valuable increase in the packet reception rate at the gateway and a significant decrease in the total consumed energy at the end nodes compared with the most related work in literature


2018 ◽  
Author(s):  
Henrique Carvalho Silva ◽  
Cíntia Borges Margi

Bluetooth Low Energy (BLE for short) is among the favorites to become a de facto standard in the context of the Internet of Things (IoT). However, its main challenge is the lack of standards for efficient mesh networking. Furthermore, the literature lacks works analyzing energy consumption trade-offs for BLE mesh networks. We address this issue by experimentally evaluating three minimal topologies for linking separate BLE star networks. We aim to determine a lower boundary in terms of energy and performance costs using the metrics of energy consumption, delivery rate, and goodput. We perform our experiments using a testbed comprised of TI CC1350 nodes running Contiki OS. Our results enable us to estimate similar costs for large scale networks.


Sign in / Sign up

Export Citation Format

Share Document