scholarly journals A Miniature Bio-Photonics Companion Diagnostics Platform for Reliable Cancer Treatment Monitoring in Blood Fluids

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2230
Author(s):  
Marianneza Chatzipetrou ◽  
Lefteris Gounaridis ◽  
George Tsekenis ◽  
Maria Dimadi ◽  
Rachel Vestering-Stenger ◽  
...  

In this paper, we present the development of a photonic biosensor device for cancer treatment monitoring as a complementary diagnostics tool. The proposed device combines multidisciplinary concepts from the photonic, nano-biochemical, micro-fluidic and reader/packaging platforms aiming to overcome limitations related to detection reliability, sensitivity, specificity, compactness and cost issues. The photonic sensor is based on an array of six asymmetric Mach Zender Interferometer (aMZI) waveguides on silicon nitride substrates and the sensing is performed by measuring the phase shift of the output signal, caused by the binding of the analyte on the functionalized aMZI surface. According to the morphological design of the waveguides, an improved sensitivity is achieved in comparison to the current technologies (<5000 nm/RIU). This platform is combined with a novel biofunctionalization methodology that involves material-selective surface chemistries and the high-resolution laser printing of biomaterials resulting in the development of an integrated photonics biosensor device that employs disposable microfluidics cartridges. The device is tested with cancer patient blood serum samples. The detection of periostin (POSTN) and transforming growth factor beta-induced protein (TGFBI), two circulating biomarkers overexpressed by cancer stem cells, is achieved in cancer patient serum with the use of the device.

Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 274-283
Author(s):  
Peng Yang ◽  
Jianhua Han ◽  
Shigeng Li ◽  
Shaoning Luo ◽  
Xusheng Tu ◽  
...  

Abstract Background Sepsis is a systemic inflammatory response that can lead to the dysfunction of many organs. The aberrant expression of miRNAs is associated with the pathogenesis of sepsis. However, the biological functions of miR-128-3p in sepsis remain largely unknown, and its mechanism should be further investigated. This study aimed to determine the regulatory network of miR-128-3p and TGFBR2 in lipopolysaccharide (LPS)-induced sepsis. Methods The expression levels of miR-128-3p and transforming growth factor beta receptors II (TGFBR2) were detected by quantitative polymerase chain reaction (qPCR). The protein levels of TGFBR2, Bcl-2, Bax, cleaved caspase 3, Smad2, and Smad3 were measured by western blot. Cell apoptosis was analyzed by flow cytometry. Cytokine production was detected by enzyme-linked immunosorbent assay (ELISA). The binding sites of miR-128-3p and TGFBR2 were predicted by Targetscan online software and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results The level of miR-128-3p was decreased, and TGFBR2 expression was increased in serum samples of sepsis patients and LPS-induced HK2 cells. Overexpression of miR-128-3p or knockdown of TGFBR2 ameliorated LPS-induced inflammation and apoptosis. Moreover, TGFBR2 was a direct target of miR-128-3p, and its overexpression reversed the inhibitory effects of miR-128-3p overexpression on inflammation and apoptosis in LPS-induced HK2 cells. Besides, overexpression of miR-128-3p downregulated TGFBR2 to suppress the activation of the Smad signaling pathway. Conclusion miR-128-3p could inhibit apoptosis and inflammation by targeting TGFBR2 in LPS-induced HK2 cells, which might provide therapeutic strategy for the treatment of sepsis.


2021 ◽  
Vol 22 (7) ◽  
pp. 3307
Author(s):  
Carolina Kymie Vasques Nonaka ◽  
Gabriela Louise Sampaio ◽  
Katia Nunes Silva ◽  
Ricardo Khouri ◽  
Carolina Thé Macedo ◽  
...  

Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), remains a serious public health problem for which there is no effective treatment in the chronic stage. Intense cardiac fibrosis and inflammation are hallmarks of chronic Chagas disease cardiomyopathy (CCC). Previously, we identified upregulation of circulating and cardiac miR-21, a pro-fibrotic microRNA (miRNA), in subjects with CCC. Here, we explored the potential role of miR-21 as a therapeutic target in a model of chronic Chagas disease. PCR array-based 88 microRNA screening was performed in heart samples obtained from C57Bl/6 mice chronically infected with T. cruzi and serum samples collected from CCC patients. MiR-21 was found upregulated in both human and mouse samples, which was corroborated by an in silico analysis of miRNA-mRNA target prediction. In vitro miR-21 functional assays (gain-and loss-of-function) were performed in cardiac fibroblasts, showing upregulation of miR-21 and collagen expression upon transforming growth factor beta 1 (TGFβ1) and T. cruzi stimulation, while miR-21 blockage reduced collagen expression. Finally, treatment of T. cruzi-infected mice with locked nucleic acid (LNA)-anti-miR-21 inhibitor promoted a significant reduction in cardiac fibrosis. Our data suggest that miR-21 is a mediator involved in the pathogenesis of cardiac fibrosis and indicates the pharmacological silencing of miR-21 as a potential therapeutic approach for CCC.


Sign in / Sign up

Export Citation Format

Share Document