scholarly journals An Enhanced Indoor Positioning Algorithm Based on Fingerprint Using Fine-Grained CSI and RSSI Measurements of IEEE 802.11n WLAN

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2769
Author(s):  
Jingjing Wang ◽  
Joongoo Park

Received signal strength indication (RSSI) obtained by Medium Access Control (MAC) layer is widely used in range-based and fingerprint location systems due to its low cost and low complexity. However, RSS is affected by noise signals and multi-path, and its positioning performance is not stable. In recent years, many commercial WiFi devices support the acquisition of physical layer channel state information (CSI). CSI is an index that can characterize the signal characteristics with more fine granularity than RSS. Compared with RSS, CSI can avoid the effects of multi-path and noise by analyzing the characteristics of multi-channel sub-carriers. To improve the indoor location accuracy and algorithm efficiency, this paper proposes a hybrid fingerprint location technology based on RSS and CSI. In the off-line phase, to overcome the problems of low positioning accuracy and fingerprint drift caused by signal instability, a methodology based on the Kalman filter and a Gaussian function is proposed to preprocess the RSSI value and CSI amplitude value, and the improved CSI phase is incorporated after the linear transformation. The mutation and noisy data are then effectively eliminated, and the accurate and smoother outputs of the RSSI and CSI values can be achieved. Then, the accurate hybrid fingerprint database is established after dimensionality reduction of the obtained high-dimensional data values. The weighted k-nearest neighbor (WKNN) algorithm is applied to reduce the complexity of the algorithm during the online positioning stage, and the accurate indoor positioning algorithm is accomplished. Experimental results show that the proposed algorithm exhibits good performance on anti-noise ability, fusion positioning accuracy, and real-time filtering. Compared with CSI-MIMO, FIFS, and RSSI-based methods, the proposed fusion correction method has higher positioning accuracy and smaller positioning error.

2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Yonghao Zhao

Nowadays, people’s demand for indoor location information is more and more, which continuously promotes the development of indoor positioning technology. In the field of indoor positioning, fingerprint based indoor positioning algorithm still accounts for a large proportion. However, the operation of this method in the offline stage is too cumbersome and time-consuming, which makes its disadvantages obvious, and requires a lot of manpower and time to sample and maintain. Therefore, in view of this phenomenon, an improved algorithm based on nearest neighbor interpolation is designed in this paper, which reduces the measurement of actual sampling points when establishing fingerprint map. At the same time, some simulation points are added to expand fingerprint map, so as to ensure that the positioning error will not become larger or even better. Experimental results show that this method can further improve the positioning accuracy while saving the sampling cost.


2022 ◽  
Vol 14 (2) ◽  
pp. 297
Author(s):  
Jingxue Bi ◽  
Hongji Cao ◽  
Yunjia Wang ◽  
Guoqiang Zheng ◽  
Keqiang Liu ◽  
...  

A density-based spatial clustering of applications with noise (DBSCAN) and three distances (TD) integrated Wi-Fi positioning algorithm was proposed, aiming to enhance the positioning accuracy and stability of fingerprinting by the dynamic selection of signal-domain distance to obtain reliable nearest reference points (RPs). Two stages were included in this algorithm. One was the offline stage, where the offline fingerprint database was constructed and the other was the online positioning stage. Three distances (Euclidean distance, Manhattan distance, and cosine distance), DBSCAN, and high-resolution distance selection principle were combined to obtain more reliable nearest RPs and optimal signal-domain distance in the online stage. Fused distance, the fusion of position-domain and signal-domain distances, was applied for DBSCAN to generate the clustering results, considering both the spatial structure and signal strength of RPs. Based on the principle that the higher resolution the distance, the more clusters will be obtained, the high-resolution distance was used to compute positioning results. The weighted K-nearest neighbor (WKNN) considering signal-domain distance selection was used to estimate positions. Two scenarios were selected as test areas; a complex-layout room (Scenario A) for post-graduates and a typical large indoor environment (Scenario B) covering 3200 m2. In both Scenarios A and B, compared with support vector machine (SVM), Gaussian process regression (GPR) and rank algorithms, the improvement rates of positioning accuracy and stability of the proposed algorithm were up to 60.44 and 60.93%, respectively. Experimental results show that the proposed algorithm has a better positioning performance in complex and large indoor environments.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7269
Author(s):  
Ling Ruan ◽  
Ling Zhang ◽  
Tong Zhou ◽  
Yi Long

The weighted K-nearest neighbor algorithm (WKNN) is easily implemented, and it has been widely applied. In the large-scale positioning regions, using all fingerprint data in matching calculations would lead to high computation expenses, which is not conducive to real-time positioning. Due to signal instability, irrelevant fingerprints reduce the positioning accuracy when performing the matching calculation process. Therefore, selecting the appropriate fingerprint data from the database more quickly and accurately is an urgent problem for improving WKNN. This paper proposes an improved Bluetooth indoor positioning method using a dynamic fingerprint window (DFW-WKNN). The dynamic fingerprint window is a space range for local fingerprint data searching instead of universal searching, and it can be dynamically adjusted according to the indoor pedestrian movement and always covers the maximum possible range of the next positioning. This method was tested and evaluated in two typical scenarios, comparing two existing algorithms, the traditional WKNN and the improved WKNN based on local clustering (LC-WKNN). The experimental results show that the proposed DFW-WKNN algorithm enormously improved both the positioning accuracy and positioning efficiency, significantly, when the fingerprint data increased.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5685
Author(s):  
Rong Zhou ◽  
Yexi Yang ◽  
Puchun Chen

An RSS transform–based weighted k-nearest neighbor (WKNN) indoor positioning algorithm, Q-WKNN, is proposed to improve the positioning accuracy and real-time performance of Wi-Fi fingerprint–based indoor positioning. To smooth the RSS fluctuation difference caused by acquisition equipment, time, and environment changes, base Q is introduced in Q-WKNN to transform RSS to Q-based RSS, based on the relationship between the received signal strength (RSS) and physical distance. Analysis of the effective range of base Q indicates that Q-WKNN is more suitable for regions with noticeable environmental changes and fixed access points (APs). To reduce the positioning time, APs are selected to form a Q-WKNN similarity matrix. Adaptive K is applied to estimate the test point (TP) position. Commonly used indoor positioning algorithms are compared to Q-WKNN on Zenodo and underground parking databases. Results show that Q-WKNN has better positioning accuracy and real-time performance than WKNN, modified-WKNN (M-WKNN), Gaussian kernel (GK), and least squares-support vector machine (LS-SVM) algorithms.


Author(s):  
Yohanes Erwin Dari ◽  
Suyoto Suyoto Suyoto ◽  
Pranowo Pranowo Pranowo

The existence of mobile devices as a location pointing device using Global Positioning System (GPS) is a very common thing nowadays. The use of GPS as a tool to determine the location of course has a shortage when used indoors. Therefore, the used of indoor location-based services in a room that leverages the use of Access Point (AP) is very important. By using the information of the Received Signal Strength (RSS) obtained from AP, then the location of the device can be determined without the need to use GPS. This technique is called the location fingerprint technique using the characteristics of received RSS’s fingerprint, then use it to determine the position. To get a more accurate position then authors used the K-Nearest Neighbor (KNN) method. KNN will use some of the data that obtained from some AP to assist in positioning the device. This solution of course would be able to determine the position of the devices in a storied building.


Sensors ◽  
2017 ◽  
Vol 17 (8) ◽  
pp. 1806 ◽  
Author(s):  
He Xu ◽  
Ye Ding ◽  
Peng Li ◽  
Ruchuan Wang ◽  
Yizhu Li

2019 ◽  
Vol 15 (5) ◽  
pp. 155014771985193
Author(s):  
Guanghua Zhang ◽  
Xue Sun ◽  
Jingqiu Ren ◽  
Weidang Lu

In order to improve the positioning accuracy and reduce the impact of indoor complex environment on WiFi positioning results, an improved fusion positioning algorithm based on WiFi–pedestrian dead reckoning is proposed. The algorithm uses extended Kalman filter as the fusion positioning filter of WiFi–pedestrian dead reckoning. Aiming at the problem of WiFi signal strength fluctuation, Bayesian estimation matching algorithm based on K-nearest neighbor is proposed to reduce the impact of the dramatic change of received signal strength indicator value on the positioning result effectively. For the cumulative error problem in pedestrian dead reckoning positioning algorithm, a post-correction module is used to reduce the error. The experimental results show that the algorithm can improve the shortcomings of these two algorithms and control the positioning accuracy within 1.68 m.


Author(s):  
M. Ramezani ◽  
D. Acharya ◽  
F. Gu ◽  
K. Khoshelham

Indoor positioning is a fundamental requirement of many indoor location-based services and applications. In this paper, we explore the potential of low-cost and widely available visual and inertial sensors for indoor positioning. We describe the Visual-Inertial Odometry (VIO) approach and propose a measurement model for omnidirectional visual-inertial odometry (OVIO). The results of experiments in two simulated indoor environments show that the OVIO approach outperforms VIO and achieves a positioning accuracy of 1.1 % of the trajectory length.


2014 ◽  
Vol 687-691 ◽  
pp. 4105-4109 ◽  
Author(s):  
Yong Jun Zhang ◽  
She Nan Li

A novel indoor positioning algorithm named BPNN-LANDMARC is proposed in this paper to increase the positioning accuracy and reduce the high time complexity of classical LANDMARC algorithm. Simulation results prove that the proposed BPNN-LANDMARC algorithm can improve the average positioning accuracy by 24.35%. In addition, the improved algorithm reduces the time complexity of algorithm obviously.


Author(s):  
I Made Oka Widyantara ◽  
I Made Dwi Asana Putra ◽  
Ida Bagus Putu Adnyana

This paper intends to explain the development of Coastal Video Monitoring System (CoViMoS) with the main characteristics including low-cost and easy implementation. CoViMoS characteristics have been realized using the device IP camera for video image acquisition, and development of software applications with the main features including detection of shoreline and it changes are automatically. This capability was based on segmentation and classification techniques based on data mining. Detection of shoreline is done by segmenting a video image of the beach, to get a cluster of objects, namely land, sea and sky, using Self Organizing Map (SOM) algorithms. The mechanism of classification is done using K-Nearest Neighbor (K-NN) algorithms to provide the class labels to objects that have been generated on the segmentation process. Furthermore, the classification of land used as a reference object in the detection of costline. Implementation CoViMoS system for monitoring systems in Cucukan Beach, Gianyar regency, have shown that the developed system is able to detect the shoreline and its changes automatically.


Sign in / Sign up

Export Citation Format

Share Document