scholarly journals An RSS Transform—Based WKNN for Indoor Positioning

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5685
Author(s):  
Rong Zhou ◽  
Yexi Yang ◽  
Puchun Chen

An RSS transform–based weighted k-nearest neighbor (WKNN) indoor positioning algorithm, Q-WKNN, is proposed to improve the positioning accuracy and real-time performance of Wi-Fi fingerprint–based indoor positioning. To smooth the RSS fluctuation difference caused by acquisition equipment, time, and environment changes, base Q is introduced in Q-WKNN to transform RSS to Q-based RSS, based on the relationship between the received signal strength (RSS) and physical distance. Analysis of the effective range of base Q indicates that Q-WKNN is more suitable for regions with noticeable environmental changes and fixed access points (APs). To reduce the positioning time, APs are selected to form a Q-WKNN similarity matrix. Adaptive K is applied to estimate the test point (TP) position. Commonly used indoor positioning algorithms are compared to Q-WKNN on Zenodo and underground parking databases. Results show that Q-WKNN has better positioning accuracy and real-time performance than WKNN, modified-WKNN (M-WKNN), Gaussian kernel (GK), and least squares-support vector machine (LS-SVM) algorithms.

2022 ◽  
Vol 14 (2) ◽  
pp. 297
Author(s):  
Jingxue Bi ◽  
Hongji Cao ◽  
Yunjia Wang ◽  
Guoqiang Zheng ◽  
Keqiang Liu ◽  
...  

A density-based spatial clustering of applications with noise (DBSCAN) and three distances (TD) integrated Wi-Fi positioning algorithm was proposed, aiming to enhance the positioning accuracy and stability of fingerprinting by the dynamic selection of signal-domain distance to obtain reliable nearest reference points (RPs). Two stages were included in this algorithm. One was the offline stage, where the offline fingerprint database was constructed and the other was the online positioning stage. Three distances (Euclidean distance, Manhattan distance, and cosine distance), DBSCAN, and high-resolution distance selection principle were combined to obtain more reliable nearest RPs and optimal signal-domain distance in the online stage. Fused distance, the fusion of position-domain and signal-domain distances, was applied for DBSCAN to generate the clustering results, considering both the spatial structure and signal strength of RPs. Based on the principle that the higher resolution the distance, the more clusters will be obtained, the high-resolution distance was used to compute positioning results. The weighted K-nearest neighbor (WKNN) considering signal-domain distance selection was used to estimate positions. Two scenarios were selected as test areas; a complex-layout room (Scenario A) for post-graduates and a typical large indoor environment (Scenario B) covering 3200 m2. In both Scenarios A and B, compared with support vector machine (SVM), Gaussian process regression (GPR) and rank algorithms, the improvement rates of positioning accuracy and stability of the proposed algorithm were up to 60.44 and 60.93%, respectively. Experimental results show that the proposed algorithm has a better positioning performance in complex and large indoor environments.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7269
Author(s):  
Ling Ruan ◽  
Ling Zhang ◽  
Tong Zhou ◽  
Yi Long

The weighted K-nearest neighbor algorithm (WKNN) is easily implemented, and it has been widely applied. In the large-scale positioning regions, using all fingerprint data in matching calculations would lead to high computation expenses, which is not conducive to real-time positioning. Due to signal instability, irrelevant fingerprints reduce the positioning accuracy when performing the matching calculation process. Therefore, selecting the appropriate fingerprint data from the database more quickly and accurately is an urgent problem for improving WKNN. This paper proposes an improved Bluetooth indoor positioning method using a dynamic fingerprint window (DFW-WKNN). The dynamic fingerprint window is a space range for local fingerprint data searching instead of universal searching, and it can be dynamically adjusted according to the indoor pedestrian movement and always covers the maximum possible range of the next positioning. This method was tested and evaluated in two typical scenarios, comparing two existing algorithms, the traditional WKNN and the improved WKNN based on local clustering (LC-WKNN). The experimental results show that the proposed DFW-WKNN algorithm enormously improved both the positioning accuracy and positioning efficiency, significantly, when the fingerprint data increased.


Author(s):  
Md Nasim Khan ◽  
Mohamed M. Ahmed

Snowfall negatively affects pavement and visibility conditions, making it one of the major causes of motor vehicle crashes in winter weather. Therefore, providing drivers with real-time roadway weather information during adverse weather is crucial for safe driving. Although road weather stations can provide weather information, these stations are expensive and often do not represent real-time trajectory-level weather information. The main motivation of this study was to develop an affordable in-vehicle snow detection system which can provide trajectory-level weather information in real time. The system utilized SHRP2 Naturalistic Driving Study video data and was based on machine learning techniques. To train the snow detection models, two texture-based image features including gray level co-occurrence matrix (GLCM) and local binary pattern (LBP), and three classification algorithms: support vector machine (SVM), k-nearest neighbor (K-NN), and random forest (RF) were used. The analysis was done on an image dataset consisting of three weather conditions: clear, light snow, and heavy snow. While the highest overall prediction accuracy of the models based on the GLCM features was found to be around 86%, the models considering the LBP based features provided a much higher prediction accuracy of 96%. The snow detection system proposed in this study is cost effective, does not require a lot of technical support, and only needs a single video camera. With the advances in smartphone cameras, simple mobile apps with proper data connectivity can effectively be used to detect roadway weather conditions in real time with reasonable accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2769
Author(s):  
Jingjing Wang ◽  
Joongoo Park

Received signal strength indication (RSSI) obtained by Medium Access Control (MAC) layer is widely used in range-based and fingerprint location systems due to its low cost and low complexity. However, RSS is affected by noise signals and multi-path, and its positioning performance is not stable. In recent years, many commercial WiFi devices support the acquisition of physical layer channel state information (CSI). CSI is an index that can characterize the signal characteristics with more fine granularity than RSS. Compared with RSS, CSI can avoid the effects of multi-path and noise by analyzing the characteristics of multi-channel sub-carriers. To improve the indoor location accuracy and algorithm efficiency, this paper proposes a hybrid fingerprint location technology based on RSS and CSI. In the off-line phase, to overcome the problems of low positioning accuracy and fingerprint drift caused by signal instability, a methodology based on the Kalman filter and a Gaussian function is proposed to preprocess the RSSI value and CSI amplitude value, and the improved CSI phase is incorporated after the linear transformation. The mutation and noisy data are then effectively eliminated, and the accurate and smoother outputs of the RSSI and CSI values can be achieved. Then, the accurate hybrid fingerprint database is established after dimensionality reduction of the obtained high-dimensional data values. The weighted k-nearest neighbor (WKNN) algorithm is applied to reduce the complexity of the algorithm during the online positioning stage, and the accurate indoor positioning algorithm is accomplished. Experimental results show that the proposed algorithm exhibits good performance on anti-noise ability, fusion positioning accuracy, and real-time filtering. Compared with CSI-MIMO, FIFS, and RSSI-based methods, the proposed fusion correction method has higher positioning accuracy and smaller positioning error.


Author(s):  
Angga Pratama Nugraha ◽  
I Nyoman Piarsa ◽  
I Made Suwija Putra

Biometric recognition of infant identification systems is critical in security access for identification and verification systems. However, until now, hospitals or health centres in Indonesia still use conventional biometric identification, such as stamping or inking on the soles of babies' feet affixed to paper and are very vulnerable to the risk of damage or loss of data. To resolve this problem, computer vision technology can accurately identify the baby's feet' soles with the final result in the form of digital data. This study compares the classification method of baby feet using the SVM (Support Vector Machine) algorithm with the K-Nearest Neighbor algorithm. The baby's feet understudy image was taken using a cellphone camera with sample data of 3 months old babies. Comparing the SVM and KNN classification methods obtained high accuracy, precision and recall values, namely 98.80% accuracy, 89.51% precision and 88.00% recall. (for the SVM Gaussian kernel classification), with an accuracy of 99.08%, 92.65% precision and 90.75% recall (for the KNN Ecluidean Distance classification), it can be concluded that the KNN classification method using Euclidean distance is the best for applied in the baby palm identification system using the geometric image feature.


Author(s):  
Moses L. Gadebe ◽  
◽  
Okuthe P. Kogeda ◽  
Sunday O. Ojo

Recognizing human activity in real time with a limited dataset is possible on a resource-constrained device. However, most classification algorithms such as Support Vector Machines, C4.5, and K Nearest Neighbor require a large dataset to accurately predict human activities. In this paper, we present a novel real-time human activity recognition model based on Gaussian Naïve Bayes (GNB) algorithm using a personalized JavaScript object notation dataset extracted from the publicly available Physical Activity Monitoring for Aging People dataset and University of Southern California Human Activity dataset. With the proposed method, the personalized JSON training dataset is extracted and compressed into a 12×8 multi-dimensional array of the time-domain features extracted using a signal magnitude vector and tilt angles from tri-axial accelerometer sensor data. The algorithm is implemented on the Android platform using the Cordova cross-platform framework with HTML5 and JavaScript. Leave-one-activity-out cross validation is implemented as a testTrainer() function, the results of which are presented using a confusion matrix. The testTrainer() function leaves category K as the testing subset and the remaining K-1 as the training dataset to validate the proposed GNB algorithm. The proposed model is inexpensive in terms of memory and computational power owing to the use of a compressed small training dataset. Each K category was repeated five times and the algorithm consistently produced the same result for each test. The result of the simulation using the tilted angle features shows overall precision, recall, F-measure, and accuracy rates of 90%, 99.6%, 94.18%, and 89.51% respectively, in comparison to rates of 36.9%, 75%, 42%, and 36.9% when the signal magnitude vector features were used. The results of the simulations confirmed and proved that when using the tilt angle dataset, the GNB algorithm is superior to Support Vector Machines, C4.5, and K Nearest Neighbor algorithms.


2021 ◽  
Author(s):  
Anshika Arora ◽  
Pinaki Chakraborty ◽  
M.P.S. Bhatia

Excessive use of smartphones throughout the day having dependency on them for social interaction, entertainment and information retrieval may lead users to develop nomophobia. This makes them feel anxious during non-availability of smartphones. This study describes the usefulness of real time smartphone usage data for prediction of nomophobia severity using machine learning. Data is collected from 141 undergraduate students analyzing their perception about their smartphone using the Nomophobia Questionnaire (NMP-Q) and their real time smartphone usage patterns using a purpose-built android application. Supervised machine learning models including Random Forest, Decision Tree, Support Vector Machines, Naïve Bayes and K-Nearest Neighbor are trained using two features sets where the first feature set comprises only the NMP-Q features and the other comprises real time smartphone usage features along with the NMP-Q features. Performance of these models is evaluated using f-measure and area under ROC and It is observed that all the models perform better when provided with smartphone usage features along with the NMP-Q features. Naïve Bayes outperforms other models in prediction of nomophobia achieving a f-measure value of 0.891 and ROC area value of 0.933.


Sensor Review ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Wei Zhang ◽  
Xianghong Hua ◽  
Kegen Yu ◽  
Weining Qiu ◽  
Shoujian Zhang ◽  
...  

Purpose This paper aims to introduce the weighted squared Euclidean distance between points in signal space, to improve the performance of the Wi-Fi indoor positioning. Nowadays, the received signal strength-based Wi-Fi indoor positioning, a low-cost indoor positioning approach, has attracted a significant attention from both academia and industry. Design/methodology/approach The local principal gradient direction is introduced and used to define the weighting function and an average algorithm based on k-means algorithm is used to estimate the local principal gradient direction of each access point. Then, correlation distance is used in the new method to find the k nearest calibration points. The weighted squared Euclidean distance between the nearest calibration point and target point is calculated and used to estimate the position of target point. Findings Experiments are conducted and the results indicate that the proposed Wi-Fi indoor positioning approach considerably outperforms the weighted k nearest neighbor method. The new method also outperforms support vector regression and extreme learning machine algorithms in the absence of sufficient fingerprints. Research limitations/implications Weighted k nearest neighbor approach, support vector regression algorithm and extreme learning machine algorithm are the three classic strategies for location determination using Wi-Fi fingerprinting. However, weighted k nearest neighbor suffers from dramatic performance degradation in the presence of multipath signal attenuation and environmental changes. More fingerprints are required for support vector regression algorithm to ensure the desirable performance; and labeling Wi-Fi fingerprints is labor-intensive. The performance of extreme learning machine algorithm may not be stable. Practical implications The new weighted squared Euclidean distance-based Wi-Fi indoor positioning strategy can improve the performance of Wi-Fi indoor positioning system. Social implications The received signal strength-based effective Wi-Fi indoor positioning system can substitute for global positioning system that does not work indoors. This effective and low-cost positioning approach would be promising for many indoor-based location services. Originality/value A novel Wi-Fi indoor positioning strategy based on the weighted squared Euclidean distance is proposed in this paper to improve the performance of the Wi-Fi indoor positioning, and the local principal gradient direction is introduced and used to define the weighting function.


Author(s):  
KUNCUP ISWANDY ◽  
ANDREAS KOENIG

The design of intelligent sensor systems for pattern recognition applications requires sophisticated methods from conventional signal processing and computational intelligence. A significant part of the overall system architecture still has to be manually elaborated in a tedious and time consuming process by an experienced designer for each new application or modification. Clearly, an automated method for auto-configuration of sensor systems would be attractive. This paper expands our previous works on automatic design of multisensor systems applying optimized Gaussian kernel for feature computation. The purpose of optimizing feature computation in the design of sensor systems is to increase the classification accuracy and the computation efficiency as well as to reduce storage and computational requirements in embedded sensor systems. Here, we investigate the feature computation of Gaussian kernel assessed by support vector machine (SVM) using genetic algorithms (GA). The experiment results are compared with the previous work using k-nearest neighbor (k-NN) and LDA/k-NN. Our experiments are tested with gas-sensor benchmark data. From the experimental results, we verify that SVM can achieve better results than k-NN and LDA/k-NN methods.


2021 ◽  
Vol 10 (5) ◽  
pp. 2530-2538
Author(s):  
Pulung Nurtantio Andono ◽  
Eko Hari Rachmawanto ◽  
Nanna Suryana Herman ◽  
Kunio Kondo

Orchid flower as ornamental plants with a variety of types where one type of orchid has various characteristics in the form of different shapes and colors. Here, we chosen support vector machine (SVM), Naïve Bayes, and k-nearest neighbor algorithm which generates text input. This system aims to assist the community in recognizing orchid plants based on their type. We used more than 2250 and 1500 images for training and testing respectively which consists of 15 types. Testing result shown impact analysis of comparison of three supervised algorithm using extraction or not and several variety distance. Here, we used SVM in Linear, Polynomial, and Gaussian kernel while k-nearest neighbor operated in distance starting from K1 until K11. Based on experimental results provide Linear kernel as best classifier and extraction process had been increase accuracy. Compared with Naïve Bayes in 66%, and a highest KNN in K=1 and d=1 is 98%, SVM had a better accuracy. SVM-GLCM-HSV better than SVM-HSV only that achieved 98.13% and 93.06% respectively both in Linear kernel. On the other side, a combination of SVM-KNN yield highest accuracy better than selected algorithm here.


Sign in / Sign up

Export Citation Format

Share Document