scholarly journals UTM-Chain: Blockchain-Based Secure Unmanned Traffic Management for Internet of Drones

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3049
Author(s):  
Azza Allouch ◽  
Omar Cheikhrouhou ◽  
Anis Koubâa ◽  
Khalifa Toumi ◽  
Mohamed Khalgui ◽  
...  

Unmanned aerial systems (UAVs) are dramatically evolving and promoting several civil applications. However, they are still prone to many security issues that threaten public safety. Security becomes even more challenging when they are connected to the Internet as their data stream is exposed to attacks. Unmanned traffic management (UTM) represents one of the most important topics for small unmanned aerial systems for beyond-line-of-sight operations in controlled low-altitude airspace. However, without securing the flight path exchanges between drones and ground stations or control centers, serious security threats may lead to disastrous situations. For example, a predefined flight path could be easily altered to make the drone perform illegal operations. Motivated by these facts, this paper discusses the security issues for UTM’s components and addresses the security requirements for such systems. Moreover, we propose UTM-Chain, a lightweight blockchain-based security solution using hyperledger fabric for UTM of low-altitude UAVs which fits the computational and storage resources limitations of UAVs. Moreover, UTM-Chain provides secure and unalterable traffic data between the UAVs and their ground control stations. The performance of the proposed system related to transaction latency and resource utilization is analyzed by using cAdvisor. Finally, the analysis of security aspects demonstrates that the proposed UTM-Chain scheme is feasible and extensible for the secure sharing of UAV data.

Aerospace ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 133
Author(s):  
Sugjoon Yoon ◽  
Dongcho Shin ◽  
Younghoon Choi ◽  
Kyungtae Park

In order to study air traffic control of UAS’s (Unmanned Aerial Systems) in very low altitudes, the UTM (UAS Traffic Management) simulator has to be as flexible and expandable as other research simulators because relevant technologies and regulations are not matured enough at this stage. Available approaches using open sources and platforms are investigated to be used in the UTM simulator. The fundamental rationale for selection is availability of necessary resources to build a UTM simulator. Integration efforts to build a UTM simulator are elaborated, using Ardupilot, MavProxi, Cesium, and VWorld, which are selected from the thorough field study. Design requirements of a UTM simulator are determined by analyzing UTM services defined by NASA (National Aeronautics and Space Administration) and Eurocontrol. The UTM simulator, named eUTM, is composed of three components: UOS (UTM Operating System), UTM, and multiple GCSs (Ground Control Stations). GCSs are responsible for generation of flight paths of various UASs. UTM component copies functions of a real UTM such as monitoring and controlling air spaces. UOS provides simulation of environment such as weather, and controls the whole UTM simulator system. UOS also generates operation scenarios of UTM, and resides on the same UTM computer as an independent process. Two GCS simulators are connected to the UTM simulator in the present configuration, but the UTM simulator can be expanded to include up to 10 GCS simulators in the present design. In order to demonstrate the flexibility and expandability of eUTM simulator, several operation scenarios are realized and typical deconfliction scenarios among them are tested with a deconfliction algorithm. During the study, some limits are identified with applied open sources and platforms, which have to be resolved in order to obtain a flexible and expandable UTM simulator supporting relevant studies. Most of them are related to interfacing individual sources and platforms which use different program languages and communication drivers.


2021 ◽  
Author(s):  
Chester Dolph ◽  
George Szatkowski ◽  
Henry Holbrook ◽  
Chris Morris ◽  
Larry Ticatch ◽  
...  

2020 ◽  
Vol 2 (3) ◽  
pp. 97-105
Author(s):  
Ravi Shankar Pandey ◽  
Vivek Srivastava ◽  
Lal Babu Yadav

Software Defined Network (SDN) decouples the responsibilities of route management and datatransmission of network devices present in network infrastructure. It integrates the control responsibility at thecentralized software component which is known as controller. This centralized aggregation of responsibilities mayresult the single point of failure in the case malicious attack at the controller side. These attacks may also affect thetraffic flow and network devices. The security issues due to such malicious attacks in SDN are dominating challengesin the implementation and utilization of opportunities provided by this new paradigm. In this paper we haveinvestigated the several research papers related to proposal of new research trends for security and suggestionswhich fulfil the security requirements like confidentiality, integrity, availability, authenticity, authorization,nonrepudiation, consistency, fast responsiveness and adaptation. We have also investigated the new future researchfor creating the attack free environment for implementing the SDN.


Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 103 ◽  
Author(s):  
Trevor Kistan ◽  
Alessandro Gardi ◽  
Roberto Sabatini

Resurgent interest in artificial intelligence (AI) techniques focused research attention on their application in aviation systems including air traffic management (ATM), air traffic flow management (ATFM), and unmanned aerial systems traffic management (UTM). By considering a novel cognitive human–machine interface (HMI), configured via machine learning, we examined the requirements for such techniques to be deployed operationally in an ATM system, exploring aspects of vendor verification, regulatory certification, and end-user acceptance. We conclude that research into related fields such as explainable AI (XAI) and computer-aided verification needs to keep pace with applied AI research in order to close the research gaps that could hinder operational deployment. Furthermore, we postulate that the increasing levels of automation and autonomy introduced by AI techniques will eventually subject ATM systems to certification requirements, and we propose a means by which ground-based ATM systems can be accommodated into the existing certification framework for aviation systems.


Author(s):  
Per Håkon Meland ◽  
Elda Paja ◽  
Erlend Andreas Gjære ◽  
Stéphane Paul ◽  
Fabiano Dalpiaz ◽  
...  

Goal and threat modelling are important activities of security requirements engineering: goals express why a system is needed, while threats motivate the need for security. Unfortunately, existing approaches mostly consider goals and threats separately, and thus neglect the mutual influence between them. In this paper, the authors address this deficiency by proposing an approach that extends goal modelling with threat modelling and analysis. The authors show that this effort is not trivial and a trade-off between visual expressiveness, usability and usefulness has to be considered. Specifically, the authors integrate threat modelling with the socio-technical security modelling language (STS-ml), introduce automated analysis techniques that propagate threats in the combined models, and present tool support that enables reuse of threats facilitated by a threat repository. The authors illustrate their approach on a case study from the Air Traffic Management (ATM) domain, from which they extract some practical challenges. The authors conclude that threats provide a useful foundation and justification for the security requirements that the authors derive from goal modelling, but this should not be considered as a replacement to risk assessment. The usage of goals and threats early in the development process allows raising awareness of high-level security issues that occur regardless of the chosen technology and organizational processes.


2017 ◽  
Vol 51 (1) ◽  
pp. 31-61 ◽  
Author(s):  
Patrick Moosbrugger ◽  
Kristin Y. Rozier ◽  
Johann Schumann

2014 ◽  
Vol 5 (2) ◽  
pp. 1-19 ◽  
Author(s):  
Per Håkon Meland ◽  
Elda Paja ◽  
Erlend Andreas Gjære ◽  
Stéphane Paul ◽  
Fabiano Dalpiaz ◽  
...  

Goal and threat modelling are important activities of security requirements engineering: goals express why a system is needed, while threats motivate the need for security. Unfortunately, existing approaches mostly consider goals and threats separately, and thus neglect the mutual influence between them. In this paper, the authors address this deficiency by proposing an approach that extends goal modelling with threat modelling and analysis. The authors show that this effort is not trivial and a trade-off between visual expressiveness, usability and usefulness has to be considered. Specifically, the authors integrate threat modelling with the socio-technical security modelling language (STS-ml), introduce automated analysis techniques that propagate threats in the combined models, and present tool support that enables reuse of threats facilitated by a threat repository. The authors illustrate their approach on a case study from the Air Traffic Management (ATM) domain, from which they extract some practical challenges. The authors conclude that threats provide a useful foundation and justification for the security requirements that the authors derive from goal modelling, but this should not be considered as a replacement to risk assessment. The usage of goals and threats early in the development process allows raising awareness of high-level security issues that occur regardless of the chosen technology and organizational processes.


Aerospace ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 65 ◽  
Author(s):  
Chin E. Lin ◽  
Pei-Chi Shao ◽  
Yu-Yuan Lin

The hierarchical unmanned aerial systems (UAS) traffic management (UTM) is proposed for UAS operation in Taiwan. The proposed UTM is constructed using the similar concept of ATM from the transport category aviation system. Based on the airspace being divided by 400 feet of altitude, the RUTM (regional UTM) is managed by the local government and the NUTM (national UTM) by the Civil Aeronautical Administration (CAA). Under construction of the UTM system infrastructure, this trial tests examine the effectiveness of UAV surveillance under 400 feet using automatic dependent surveillance-broadcast (ADS-B)-like on-board units (OBU). The ground transceiver station (GTS) is designed with the adoptable systems. In these implementation tests, five long-range wide area network (LoRa) gateways and one automatic packet reporting system (APRS) I-Gate are deployed to cover the Tainan Metropolitan area. The data rates are set in different systems from 8 to 12 s to prevent from data conflict or congestion. The signal coverage, time delay, data distribution, and data variance in communication are recorded and analyzed for RUTM operation. Data streaming and Internet manipulation are verified with cloud system stability and availability. Simple operational procedures are defined with priority for detect and avoid (DAA) for unmanned aerial vehicles (UAVs). Mobile communication and Zello broadcasts are introduced and applied to establish controller-to-pilot communication (CPC) for DAA. The UAV flight tests are generally beyond visual line-of-sight (BVLOS) near suburban areas with flight distances to 8 km. On the GTS deployment, six test locations examine communication coverage and effectiveness using ADS-B like OBUs. In system verification, the proposed ADS-B like OBU works well in the UTM infrastructure. The system feasibility is proven with support of receiving data analysis and transceiver efficiency. The trial test supports RUTM in Taiwan for UAV operations.


Sign in / Sign up

Export Citation Format

Share Document