scholarly journals Development of a Flexible and Expandable UTM Simulator Based on Open Sources and Platforms

Aerospace ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 133
Author(s):  
Sugjoon Yoon ◽  
Dongcho Shin ◽  
Younghoon Choi ◽  
Kyungtae Park

In order to study air traffic control of UAS’s (Unmanned Aerial Systems) in very low altitudes, the UTM (UAS Traffic Management) simulator has to be as flexible and expandable as other research simulators because relevant technologies and regulations are not matured enough at this stage. Available approaches using open sources and platforms are investigated to be used in the UTM simulator. The fundamental rationale for selection is availability of necessary resources to build a UTM simulator. Integration efforts to build a UTM simulator are elaborated, using Ardupilot, MavProxi, Cesium, and VWorld, which are selected from the thorough field study. Design requirements of a UTM simulator are determined by analyzing UTM services defined by NASA (National Aeronautics and Space Administration) and Eurocontrol. The UTM simulator, named eUTM, is composed of three components: UOS (UTM Operating System), UTM, and multiple GCSs (Ground Control Stations). GCSs are responsible for generation of flight paths of various UASs. UTM component copies functions of a real UTM such as monitoring and controlling air spaces. UOS provides simulation of environment such as weather, and controls the whole UTM simulator system. UOS also generates operation scenarios of UTM, and resides on the same UTM computer as an independent process. Two GCS simulators are connected to the UTM simulator in the present configuration, but the UTM simulator can be expanded to include up to 10 GCS simulators in the present design. In order to demonstrate the flexibility and expandability of eUTM simulator, several operation scenarios are realized and typical deconfliction scenarios among them are tested with a deconfliction algorithm. During the study, some limits are identified with applied open sources and platforms, which have to be resolved in order to obtain a flexible and expandable UTM simulator supporting relevant studies. Most of them are related to interfacing individual sources and platforms which use different program languages and communication drivers.

2021 ◽  
Vol 13 (8) ◽  
pp. 188
Author(s):  
Marianna Di Gregorio ◽  
Marco Romano ◽  
Monica Sebillo ◽  
Giuliana Vitiello ◽  
Angela Vozella

The use of Unmanned Aerial Systems, commonly called drones, is growing enormously today. Applications that can benefit from the use of fleets of drones and a related human–machine interface are emerging to ensure better performance and reliability. In particular, a fleet of drones can become a valuable tool for monitoring a wide area and transmitting relevant information to the ground control station. We present a human–machine interface for a Ground Control Station used to remotely operate a fleet of drones, in a collaborative setting, by a team of multiple operators. In such a collaborative setting, a major interface design challenge has been to maximize the Team Situation Awareness, shifting the focus from the individual operator to the entire group decision-makers. We were especially interested in testing the hypothesis that shared displays may improve the team situation awareness and hence the overall performance. The experimental study we present shows that there is no difference in performance between shared and non-shared displays. However, in trials when unexpected events occurred, teams using shared displays-maintained good performance whereas in teams using non-shared displays performance reduced. In particular, in case of unexpected situations, operators are able to safely bring more drones home, maintaining a higher level of team situational awareness.


2021 ◽  
Author(s):  
Chester Dolph ◽  
George Szatkowski ◽  
Henry Holbrook ◽  
Chris Morris ◽  
Larry Ticatch ◽  
...  

Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Margaret Kalacska ◽  
Oliver Lucanus ◽  
J. Pablo Arroyo-Mora ◽  
Étienne Laliberté ◽  
Kathryn Elmer ◽  
...  

The rapid increase of low-cost consumer-grade to enterprise-level unmanned aerial systems (UASs) has resulted in the exponential use of these systems in many applications. Structure from motion with multiview stereo (SfM-MVS) photogrammetry is now the baseline for the development of orthoimages and 3D surfaces (e.g., digital elevation models). The horizontal and vertical positional accuracies (x, y and z) of these products in general, rely heavily on the use of ground control points (GCPs). However, for many applications, the use of GCPs is not possible. Here we tested 14 UASs to assess the positional and within-model accuracy of SfM-MVS reconstructions of low-relief landscapes without GCPs ranging from consumer to enterprise-grade vertical takeoff and landing (VTOL) platforms. We found that high positional accuracy is not necessarily related to the platform cost or grade, rather the most important aspect is the use of post-processing kinetic (PPK) or real-time kinetic (RTK) solutions for geotagging the photographs. SfM-MVS products generated from UAS with onboard geotagging, regardless of grade, results in greater positional accuracies and lower within-model errors. We conclude that where repeatability and adherence to a high level of accuracy are needed, only RTK and PPK systems should be used without GCPs.


Drones ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 15 ◽  
Author(s):  
Salvatore Manfreda ◽  
Petr Dvorak ◽  
Jana Mullerova ◽  
Sorin Herban ◽  
Pietro Vuono ◽  
...  

Small unmanned aerial systems (UASs) equipped with an optical camera are a cost-effective strategy for topographic surveys. These low-cost UASs can provide useful information for three-dimensional (3D) reconstruction even if they are equipped with a low-quality navigation system. To ensure the production of high-quality topographic models, careful consideration of the flight mode and proper distribution of ground control points are required. To this end, a commercial UAS was adopted to monitor a small earthen dam using different combinations of flight configurations and by adopting a variable number of ground control points (GCPs). The results highlight that optimization of both the choice and combination of flight plans can reduce the relative error of the 3D model to within two meters without the need to include GCPs. However, the use of GCPs greatly improved the quality of the topographic survey, reducing error to the order of a few centimeters. The combined use of images extracted from two flights, one with a camera mounted at nadir and the second with a 20° angle, was found to be beneficial for increasing the overall accuracy of the 3D model and especially the vertical precision.


Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 103 ◽  
Author(s):  
Trevor Kistan ◽  
Alessandro Gardi ◽  
Roberto Sabatini

Resurgent interest in artificial intelligence (AI) techniques focused research attention on their application in aviation systems including air traffic management (ATM), air traffic flow management (ATFM), and unmanned aerial systems traffic management (UTM). By considering a novel cognitive human–machine interface (HMI), configured via machine learning, we examined the requirements for such techniques to be deployed operationally in an ATM system, exploring aspects of vendor verification, regulatory certification, and end-user acceptance. We conclude that research into related fields such as explainable AI (XAI) and computer-aided verification needs to keep pace with applied AI research in order to close the research gaps that could hinder operational deployment. Furthermore, we postulate that the increasing levels of automation and autonomy introduced by AI techniques will eventually subject ATM systems to certification requirements, and we propose a means by which ground-based ATM systems can be accommodated into the existing certification framework for aviation systems.


2021 ◽  
Author(s):  
Zachary M Miller ◽  
Joseph Hupy ◽  
Aishwarya Chandrasekaran ◽  
Guofan Shao ◽  
Songlin Fei

Abstract Unmanned Aerial Systems (UAS) serve as an excellent remote-sensing platform to fulfill an aerial imagery data collection niche previously unattainable in forestry by satellites and manned aircraft. However, for UAS-derived data to be spatially representative, a precise network of ground control points (GCP) is often required, which can be tedious and limit the logistical benefits of UAS rapid deployment capabilities, especially in densely forested areas. Therefore, methods for efficient data collection without GCPs are highly desired in UAS remote sensing. Here, we demonstrate the use of postprocessing kinematic (PPK) technology to obtain subcentimeter precision in datasets of forested areas without the need for placing GCPs. We evaluated two key measures, positional variability and time efficiency, of the PPK technology by comparing them to traditional GCP methods. Results show that PPK displays consistently higher positional precision than traditional GCP approaches. Moreover, PPK surveys and processing take less time to complete than traditional GCP methods and require fewer logistical steps, especially in image acquisition. The time and resource savings with PPK as compared to GCP processing are undeniable. We conclude that PPK technology provides a practical means to produce precise aerial forest surveys. Study Implications Unmanned Aerial Systems (UAS) have enormous potential for lowering costs and streamlining practices in the forestry management and research community. Despite this potential, however, UAS forestry applications have been limited in scope and precision because of a reliance on using ground-based GPS technology to survey ground control points (GCP), which are time intensive and require an open view of the sky. Such a need for a ground-based GCP survey, along with forest canopy serving to limit and scatter incoming GPS signals, diminishes the potential for rapid deployment and precision mapping offered by UAS. Fortunately, Postprocessing-Kinematic (PPK) GPS technology lowers these barriers by providing the means to seamlessly gather highly precise UAS imagery without needing to conduct time-intensive ground-based surveys. This study compares the precision and time-effectiveness between traditional GCP marker surveys and PPK correction methods.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4800 ◽  
Author(s):  
Christopher Dahlin Rodin ◽  
Fabio Augusto de Alcantara Andrade ◽  
Anthony Reinier Hovenburg ◽  
Tor Arne Johansen

Optical imaging systems are one of the most common sensors used for collecting data with small Unmanned Aerial Systems (sUAS). Plenty of research exists which present custom-made optical imaging systems for specific missions. However, the research commonly leaves out the explanation of design parameters and considerations taken during the design of the optical imaging system, especially the image stabilization strategy used, which is a significant issue in sUAS imaging missions. This paper surveys useful methodologies for designing a stabilized optical imaging system by presenting an overview of the important aspects that must be addressed in the designing phase and which tools and techniques are available and should be chosen according to the design requirements.


Aerospace ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 65 ◽  
Author(s):  
Chin E. Lin ◽  
Pei-Chi Shao ◽  
Yu-Yuan Lin

The hierarchical unmanned aerial systems (UAS) traffic management (UTM) is proposed for UAS operation in Taiwan. The proposed UTM is constructed using the similar concept of ATM from the transport category aviation system. Based on the airspace being divided by 400 feet of altitude, the RUTM (regional UTM) is managed by the local government and the NUTM (national UTM) by the Civil Aeronautical Administration (CAA). Under construction of the UTM system infrastructure, this trial tests examine the effectiveness of UAV surveillance under 400 feet using automatic dependent surveillance-broadcast (ADS-B)-like on-board units (OBU). The ground transceiver station (GTS) is designed with the adoptable systems. In these implementation tests, five long-range wide area network (LoRa) gateways and one automatic packet reporting system (APRS) I-Gate are deployed to cover the Tainan Metropolitan area. The data rates are set in different systems from 8 to 12 s to prevent from data conflict or congestion. The signal coverage, time delay, data distribution, and data variance in communication are recorded and analyzed for RUTM operation. Data streaming and Internet manipulation are verified with cloud system stability and availability. Simple operational procedures are defined with priority for detect and avoid (DAA) for unmanned aerial vehicles (UAVs). Mobile communication and Zello broadcasts are introduced and applied to establish controller-to-pilot communication (CPC) for DAA. The UAV flight tests are generally beyond visual line-of-sight (BVLOS) near suburban areas with flight distances to 8 km. On the GTS deployment, six test locations examine communication coverage and effectiveness using ADS-B like OBUs. In system verification, the proposed ADS-B like OBU works well in the UTM infrastructure. The system feasibility is proven with support of receiving data analysis and transceiver efficiency. The trial test supports RUTM in Taiwan for UAV operations.


2020 ◽  
Vol 11 (4) ◽  
pp. 1037-1044
Author(s):  
F. Nikodem ◽  
S. Kaltenhäuser

Abstract Recently, the European Aviation Safety Agency and other civil aviation authorities introduced a regulatory framework for low- and medium-risk operations of unmanned aerial systems (UAS) where medium-risk operations fall into the ‘specific’ category. Other introduced categories are the ‘open’ category for very-low-risk operations and the ‘certified’ category for high-risk operations that are comparable to manned aviation. This framework has the potential to reduce the certification costs compared to manned civil aviation. This paper discusses the challenges for operators of high-altitude platforms who aim for medium-risk UAS operations in the ‘specific’ category. It also shows ways to obtain an operation approval in the ‘specific’ category and how to deal with the associated operational requirements to perform such long-endurance UAS missions. Moreover, problems the high-altitude platform operator has to face when applying SORA are discussed. The paper closes with a promising approach to further enable high-altitude operations and to face some of the problems that occurred in the applicability of SORA to high-altitude platform operations by the use of 4D-operational volumes and unmanned traffic management (UTM) services.


Sign in / Sign up

Export Citation Format

Share Document