scholarly journals High-Gain Millimeter-Wave Patch Array Antenna for Unmanned Aerial Vehicle Application

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3914
Author(s):  
Kyei Anim ◽  
Jung-Nam Lee ◽  
Young-Bae Jung

A high-gain millimeter-wave patch array antenna is presented for unmanned aerial vehicles (UAVs). For the large-scale patch array antenna, microstrip lines and higher-mode surface wave radiations contribute enormously to the antenna loss, especially at the millimeter-wave band. Here, the element of a large patch array antenna is implemented with a substrate integrated waveguide (SIW) cavity-backed patch fed by the aperture-coupled feeding (ACF) structure. However, in this case, a large coupling aperture is used to create strongly bound waves, which maximizes the coupling level between the patch and the feedline. This approach helps to improve antenna gain, but at the same time leads to a significant level of back radiation due to the microstrip feedline and unwanted surface-wave radiation, especially for the large patch arrays. Using the SIW cavity-backed patch and stripline feedline of the ACF in the element design, therefore, provides a solution to this problem. Thus, a full-corporate feed 32 × 32 array antenna achieves realized gain of 30.71–32.8 dBi with radiation efficiency above 52% within the operational band of 25.43–26.91 GHz. The fabricated antenna also retains being lightweight, which is desirable for UAVs, because it has no metal plate at the backside to support the antenna.

2021 ◽  
Author(s):  
Youjian Hu ◽  
Qingwen Deng ◽  
Xiaojun Ying ◽  
Siyi Shen ◽  
Yuming Zeng ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 945
Author(s):  
Minwoo Yi ◽  
Youngseok Bae ◽  
Sungjun Yoo

Reflectarray antennas composed of rectangular grooves with sub-wavelength holes on a metal plate are designed for millimeter-wave regions. All depths of multiple grooves in the metal reflectarray are elaborately manipulated for a high-gain reflector. A sub-wavelength hole in each groove reduces the mass of the reflectarray antenna, which rarely affects the re-radiated millimeter-wave filed from the groove. In this paper, we have demonstrated light high-gain reflectarray antennas and achieved a 25%-light reflectarray antenna compared with a metal reflectarray without sub-wavelength holes. The designed reflectarray antenna operates within the 15% wide-band bandwidth at 3 dB for millimeter-wave band.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yousra Ghazaoui ◽  
Mohammed EL Ghzaoui ◽  
Sudipta Das ◽  
BTP Madhav ◽  
Ali el Alami

Purpose This paper aims to present the design, fabrication and analysis of a wideband, enhanced gain 1 × 2 patch antenna array with a simple profile structure to meet the desired antenna traits, such as wide bandwidth, high gain and directional patterns expected for the upcoming fifth-generation (5G) wireless applications in the millimeter wave band. To enhance these parameters (bandwidth and gain), a new antenna geometry by using a T-junction power divider is presented. Design/methodology/approach The theory behind this paper is connected with advancements in the 5G communications related to antennas. The methodology used in this work is to design a high gain array antenna and to identify the best possible power divider to deliver the power in an optimized way. The design methodology adopts several steps like the selection of proper substrate material as per the design specification, size of the antenna as per the frequency of operation and application-specific environment condition. The simulation has been performed on the designed antenna in the electromagnetic simulation tool (high-frequency structure simulator [HFSS]), and optimization has been done with parametric analysis, and then the final array antenna model is proposed. The proposed array contains 2-patch elements excited by one port adapted to 50 Ω through a T-junction power divider. The 1 × 2 array configuration with the suggested geometry helps to improve the overall gain of the antenna, and the implementation of the T-junction power divider provides enhanced bandwidth. The proposed array designed using a 1.6 mm thick flame retardant substrate occupies a compact area of 14 × 12.14 mm2. Findings The prototype of the array antenna is fabricated and measured to validate the design concept. A good agreement has been reached between the measured and simulated antenna parameters. The measured results confirm its wideband and high gain characteristics, covering 24.77–28.80 GHz for S11= –10 dB with a peak gain of about 15.16 dB at 27.65 GHz. Originality/value The proposed antenna covers the bandwidth requirements of the 26 GHz n258 band (24.25–27.50 GHz) to be deployed in the UK and Europe. The suggested antenna structure also covers the federal communications commission (FCC)-regulated 28 GHz n261 band (27.5–28.35 GHz) to be deployed in America and Canada. The low profile, compact size, simple structure, wide bandwidth, high gain and desired directional radiation patterns confirm the applicability of the suggested array antenna for the upcoming 5 G wireless systems.


2012 ◽  
Vol E95.C (10) ◽  
pp. 1635-1642 ◽  
Author(s):  
Yuanfeng SHE ◽  
Jiro HIROKAWA ◽  
Makoto ANDO ◽  
Daisuke HANATANI ◽  
Masahiro FUJIMOTO

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7054
Author(s):  
Legen Dai ◽  
Yongjun Xie ◽  
Huai Wang

A high end-fire gain, low-profile surface wave antenna with capacitive feed structure is presented in this paper. The proposed dielectric-metal surface wave antenna is composed of a dielectric slab that is mounted on a metal carrier and a low-profile feed structure. The feed structure is composed of a monopole radiation pin that is loaded with a circular metal plate and a grounding pin. The profile height of the antenna is only one-tenth of the operating wavelength. With a good end-fire performance and low profile, the antenna is very suitable to be conformally mounted on the surface of flight vehicles. The proposed antenna was designed and manufactured at the center frequency of 6 GHz. Measured results demonstrated that the proposed antenna had a bandwidth of 7.33%, ranging from 5.89 to 6.33 GHz, and the antenna reached a high gain of 9.76 dBi with a length of 122.96 mm (2.45 λ) in the end-fire direction.


Sign in / Sign up

Export Citation Format

Share Document