scholarly journals Transformation of Transient Overvoltages by Inductive Voltage Transformers

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4167
Author(s):  
Michał Kaczmarek ◽  
Dariusz Brodecki

Overvoltage transients occur after any type of switching activity in a power network, such as breaker operation, fault occurrence/clearance and rapid load change. This distortion of voltage is transformed to the secondary circuit of a voltage transformer. The maximum values of such impulses may many times exceed the rated value of its secondary voltage. This can lead to malfunction of measuring or protection devices connected to the secondary circuit of a voltage transformer and even their damage. The paper presents the application of determined values of ratio error at harmonics of the inductive voltage of the transformer to predict the value of transformed slow-front transient overvoltage to their secondary circuits. This will help to prevent malfunction of measuring or protection devices connected to the secondary side of the voltage transformer and increase their safety of operation. The inductive voltage transformer equivalent circuit for transformation of higher frequency components of distorted voltage must be extended with internal capacitances of windings. This is caused by the fact that the resonance phenomenon of the slow-front transient overvoltage results from leakage inductance and capacitance of primary winding, not from the magnetic core. Therefore, this behaviour is independent from the value of the applied voltage.

Author(s):  
Oleksii Hanus ◽  
Kostiantyn Starkov

A non-linear dynamic mathematical model of voltage transformer has been considered and overvoltages arising on the elements of voltage transformer equivalent circuit during transient processes have been investigated. The influence of voltage transformer secondary circuit capacitance on overvoltage multiplicity in the primary circuits and the duration of transients has been determined. The advantages of approximation of nonlinearity of voltage transformers by hyperbolic sine are used. Mathematical expressions determining the nature of changes in the forced and free components of the transient process in an electrical network with a voltage transformer have been obtained. It is shown that with the increase of the electric network capacitance the duration of the transition process damping increases and the frequency of the forced oscillations and the level of overvoltage decrease. It is proved that even small, in comparison with the primary nominal sinusoidal voltage, aperiodic components of the voltage transient process can lead to significant overvoltages during voltage transformer outages. It has been substantiated that both the secondary resistance and the switching torque influence the overvoltage multiplicity arising in the primary winding of voltage transformers. It is shown that the closed secondary winding worsens the disconnection process of non-linear inductance of voltage transformers. The values to which overvoltages increase in this case are determined. According to the results of calculations it is determined that with open secondary winding of voltage transformers the duration of transient process significantly increases. It has been found that the decrease of frequency of forced oscillations, which occurs in this case, is accompanied by an increase of currents in the primary winding of the voltage transformer, which is dangerous in terms of thermal stability of the winding insulation. It is shown, that closing the secondary winding of voltage transformers leads to significant reduction of transient damping time. It is suggested that this algorithm can be used to provide a rapid breakdown (suppression) of ferroresonant processes. The effectiveness of such a measure of stopping of ferroresonance processes as short-term shunting of secondary winding of voltage transformers has been investigated. The correlation of parameters of electric networks (capacity of busbar sections, nonlinearity of characteristics of voltage transformers, disconnection torque, etc.) at which ferroresonance process may occur and consideration of which may allow, in terms of prevention of ferroresonance processes, to identify substations (electric networks) that require more detailed research has been determined. The results of analytical studies were tested in the electric networks of JSC "Kharkivoblenergo" and used in the electricity distribution system for the selection of specific voltage transformers for certain configurations of electrical networks.


2021 ◽  
Vol 1034 ◽  
pp. 151-157
Author(s):  
Michał Kaczmarek ◽  
Ernest Stano

In the paper the change of the magnetic flux density under single harmonic distortion is discussed. Presented results show the dependence of the value of the magnetic flux density in the toroidal magnetic core made from the Ni80Fe20 tape of the phase angle of higher harmonic in relation to the main harmonic of distorted magnetizing current. Moreover, the influence of higher harmonic depends from it frequency and it becomes undetectable above 15th higher harmonic, even if its level reaches 50% of the RMS value of the main harmonic of distorted magnetizing current. Laboratory tests were carried out for the magnetic toroidal core of iCT with a current ratio equal to 300 A / 5 A. The oscilloscope is used to measure waveforms of the excitation current and the secondary voltage through the voltage probes. Build in numerical integration is used to determine the magnetic flux density from secondary voltage. In the case of tested 5th higher harmonic the highest value of the magnetic flux density is obtained for phase angle equal to 90° between main and higher harmonics, while the lowest is obtained for 270°. This depends from the initial phase of the magnetic field strength and results from the integration of distorted secondary voltage with the particular content of higher harmonics.


2013 ◽  
Vol 24 (3) ◽  
pp. 339-348 ◽  
Author(s):  
Célio Anésio da Silva ◽  
Damásio Fernandes ◽  
Washington Luiz Araújo Neves ◽  
Eubis Pereira Machado

2013 ◽  
Vol 313-314 ◽  
pp. 797-803
Author(s):  
Xiao Dong Ding ◽  
Yan An Wang

The traditional high-voltage high-frequency transformer has a drawback of low power density due to the rigorous requirements of high voltage insulation. This paper proposes a new configuration for the magnetic core based on planar EE cores. The parallel connection of planar cores was adopted as a unit, and several units were cascaded to form the high-voltage transformer. The electrical potential distribution of the proposed transformer is more uniform than a traditional transformer, and enables a decrease in the insulation distances. The mechanical configuration of a laboratory prototype is discussed, as well as the electrical, parasitic, and thermal behaviors.


2014 ◽  
Vol 573 ◽  
pp. 31-34 ◽  
Author(s):  
S. Jayaprakash ◽  
V. Ramakrishnan

This paper presents a Hardware implementation of single-stage solar based DC-DC converter for inductive load application. Solar model is connected in the input side. The circuit has two full wave converter connected to boost the voltage and also for the power factor correction. Switch-utilization factor is improved by using two active switches to serve in the PFC circuits. Controlled converter is used to load side along with pi filter. Finally inductive load is connected to output side. In the hardware circuit solar panel output voltage, transformer primary, secondary voltage and load voltage is measured. In the circuit used with all the component parameters to operate at zero-voltage switching which retains the high circuit efficiency. A circuit is designed for an 80v dc output and tested.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4432
Author(s):  
Michal Kaczmarek ◽  
Ernest Stano

In this paper the results of the tests of the wideband transformation accuracy of medium voltage (MV) inductive voltage transformers (VTs) in the frequencies range from 50 Hz up to 5 kHz are presented. The values of voltage error and phase displacement for transformation of the harmonics of distorted primary voltages are determined. In the case of a typical 50 Hz-type inductive VT with a rated primary voltage equal to (15/Ö3) kV and (20/Ö3) kV manufactured by an international company the limiting values of the accuracy classes extension for quality metering required by the standard IEC 61869-6 for the Low Power Instrument Transformers (LPIT) were not exceeded. While, in the same test other MV inductive VTs show poor accuracy and even resonance at multiple frequencies. Unfortunately, this problem also arises from nonlinearity of the magnetization characteristic of their magnetic core. Therefore, for transformation of the sinusoidal voltage in the secondary voltage significant but not easily detectable values of the low order higher harmonics are present. Moreover, for transformation of harmonics of distorted primary voltage the influence of connected capacitance on the obtained values of voltage error and phase displacement was tested.


Sign in / Sign up

Export Citation Format

Share Document