scholarly journals Embedded Brain Computer Interface: State-of-the-Art in Research

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4293
Author(s):  
Kais Belwafi ◽  
Sofien Gannouni ◽  
Hatim Aboalsamh

There is a wide area of application that uses cerebral activity to restore capabilities for people with severe motor disabilities, and actually the number of such systems keeps growing. Most of the current BCI systems are based on a personal computer. However, there is a tremendous interest in the implementation of BCIs on a portable platform, which has a small size, faster to load, much lower price, lower resources, and lower power consumption than those for full PCs. Depending on the complexity of the signal processing algorithms, it may be more suitable to work with slow processors because there is no need to allow excess capacity of more demanding tasks. So, in this review, we provide an overview of the BCIs development and the current available technology before discussing experimental studies of BCIs.

2021 ◽  
pp. 1-15
Author(s):  
Jie Hong ◽  
Xiansheng Qin

Over past two decades, steady-state evoked potentials (SSVEP)-based brain computer interface (BCI) systems have been extensively developed. As we all know, signal processing algorithms play an important role in this BCI. However, there is no comprehensive review of the latest development of signal processing algorithms for SSVEP-based BCI. By analyzing the papers published in authoritative journals in nearly five years, signal processing algorithms of preprocessing, feature extraction and classification modules are discussed in detail. In addition, other aspects existed in this BCI are mentioned. The following key problems are solved. (1) In recent years, which signal processing algorithms are frequently used in each module? (2) Which signal processing algorithms attract more attention in recent years? (3) Which modules are the key to signal processing in BCI field? This information is very important for choosing the appropriate algorithms, and can also be considered as a reference for further research. Simultaneously, we hope that this work can provide relevant BCI researchers with valuable information about the latest trends of signal processing algorithms for SSVEP-based BCI systems.


2013 ◽  
Vol 300-301 ◽  
pp. 721-724 ◽  
Author(s):  
Yi Hung Liu ◽  
Jui Tsung Weng ◽  
Han Pang Huang ◽  
Jyh Tong Teng

P300 speller is a well-known brain-computer interface (BCI), which allows patients with severe motor disabilities to spell words through the recognition on patients’ brain activity measured by electroencephalography (EEG). The brain-activity recognition is essentially a task of detecting of P300 responses in EEG signals. Support vector machine (SVM) has been a widely-used P300 detector in existing works. However, SVM is computationally expensive, greatly reducing the usability of the speller BCI for practical use. To address this issue, we propose in this paper a novel P300 detector, which is based on the kernel principal component analysis (KPCA). The proposed detector has a lower computational complexity, and can measure the belongingness of an input EEG to P300 class by the construction of EEG in nonlinear eigenspaces. Results carried out on subjects show that the proposed method is able to significantly shorten offline training sessions of the speller BCI while achieving high online P300-detection accuracy.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3620 ◽  
Author(s):  
Vinay Chamola ◽  
Ankur Vineet ◽  
Anand Nayyar ◽  
Eklas Hossain

A Brain-Computer Interface (BCI) acts as a communication mechanism using brain signals to control external devices. The generation of such signals is sometimes independent of the nervous system, such as in Passive BCI. This is majorly beneficial for those who have severe motor disabilities. Traditional BCI systems have been dependent only on brain signals recorded using Electroencephalography (EEG) and have used a rule-based translation algorithm to generate control commands. However, the recent use of multi-sensor data fusion and machine learning-based translation algorithms has improved the accuracy of such systems. This paper discusses various BCI applications such as tele-presence, grasping of objects, navigation, etc. that use multi-sensor fusion and machine learning to control a humanoid robot to perform a desired task. The paper also includes a review of the methods and system design used in the discussed applications.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dheeraj Rathee ◽  
Haider Raza ◽  
Sujit Roy ◽  
Girijesh Prasad

AbstractRecent advancements in magnetoencephalography (MEG)-based brain-computer interfaces (BCIs) have shown great potential. However, the performance of current MEG-BCI systems is still inadequate and one of the main reasons for this is the unavailability of open-source MEG-BCI datasets. MEG systems are expensive and hence MEG datasets are not readily available for researchers to develop effective and efficient BCI-related signal processing algorithms. In this work, we release a 306-channel MEG-BCI data recorded at 1KHz sampling frequency during four mental imagery tasks (i.e. hand imagery, feet imagery, subtraction imagery, and word generation imagery). The dataset contains two sessions of MEG recordings performed on separate days from 17 healthy participants using a typical BCI imagery paradigm. The current dataset will be the only publicly available MEG imagery BCI dataset as per our knowledge. The dataset can be used by the scientific community towards the development of novel pattern recognition machine learning methods to detect brain activities related to motor imagery and cognitive imagery tasks using MEG signals.


2019 ◽  
pp. 21-27
Author(s):  
José Jaime Esqueda-Elizondo ◽  
Laura Jiménez-Beristáin ◽  
Carlos Alberto Chávez-Guzmán ◽  
Ricardo Jesús Renato Guerra-Fraustro

We present a review of the state of the art of the techniques and algorithms most used in the selection and detection of characteristics of electroencephalographic signals of people when consciously performing activities. These features are numeric parameters that describe the behavior of the signal and are the basis of patterns. In addition, previous experiences in the acquisition of electroencephalographic signals using the Epoc brain-computer interface manufactured by Emotiv are presented. First, some techniques used to eliminate artifacts (disturbances) present in the signal generated by blinking, strong breathing or other movements that contaminate the signal are presented. Later, the algorithms most frequently used in the processing of electroencephalographic signals are shown for the extraction of characteristics that describe the behavior of these patterns and that can be used to detect and recognize patterns in other signals. Finally, we present the lessons that we have acquired as a work team in the recording of electroencephalographic signals in order to be helpful for beginners.


2019 ◽  
Vol 13 (1) ◽  
pp. 127-133 ◽  
Author(s):  
T. Anitha ◽  
N. Shanthi ◽  
R. Sathiyasheelan ◽  
G. Emayavaramban ◽  
T. Rajendran

Aim /Objective: A Brain-Computer Interface (BCI) is a communication medium, which restructures brain signals into respective commands for an external device. Methodology: A BCI allows its target users like persons with motor disabilities to act on their environment using brain signals without using peripheral nerves or muscles. In this review article, we have presented a view on different BCIs for humans with motor disabilities. Results & Conclusion: From the study, it is clear that the P300 based Electroencephalography (EEG)BCIs with Steady-State Visually Evoked Potential (SSVEP) non-parametric feature extraction techniques work with high efficiency in the major parameters like Information Bit Transfer Rate (ITR), Mutual Information (MI) rate and Low Signal to Noise Ratio (SNR) and achieve a maximum classification accuracy using Self Organized Fuzzy Neural Network (SOFNN).


2007 ◽  
Vol 106 (3) ◽  
pp. 495-500 ◽  
Author(s):  
Elizabeth A. Felton ◽  
J. Adam Wilson ◽  
Justin C. Williams ◽  
P. Charles Garell

✓Brain–computer interface (BCI) technology can offer individuals with severe motor disabilities greater independence and a higher quality of life. The BCI systems take recorded brain signals and translate them into real-time actions, for improved communication, movement, or perception. Four patient participants with a clinical need for intracranial electrocorticography (ECoG) participated in this study. The participants were trained over multiple sessions to use motor and/or auditory imagery to modulate their brain signals in order to control the movement of a computer cursor. Participants with electrodes over motor and/or sensory areas were able to achieve cursor control over 2 to 7 days of training. These findings indicate that sensory and other brain areas not previously considered ideal for ECoG-based control can provide additional channels of control that may be useful for a motor BCI.


Sign in / Sign up

Export Citation Format

Share Document