scholarly journals When Deep Learning Meets Multi-Task Learning in SAR ATR: Simultaneous Target Recognition and Segmentation

2020 ◽  
Vol 12 (23) ◽  
pp. 3863
Author(s):  
Chenwei Wang ◽  
Jifang Pei ◽  
Zhiyong Wang ◽  
Yulin Huang ◽  
Junjie Wu ◽  
...  

With the recent advances of deep learning, automatic target recognition (ATR) of synthetic aperture radar (SAR) has achieved superior performance. By not being limited to the target category, the SAR ATR system could benefit from the simultaneous extraction of multifarious target attributes. In this paper, we propose a new multi-task learning approach for SAR ATR, which could obtain the accurate category and precise shape of the targets simultaneously. By introducing deep learning theory into multi-task learning, we first propose a novel multi-task deep learning framework with two main structures: encoder and decoder. The encoder is constructed to extract sufficient image features in different scales for the decoder, while the decoder is a tasks-specific structure which employs these extracted features adaptively and optimally to meet the different feature demands of the recognition and segmentation. Therefore, the proposed framework has the ability to achieve superior recognition and segmentation performance. Based on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset, experimental results show the superiority of the proposed framework in terms of recognition and segmentation.

2018 ◽  
Vol 56 (4) ◽  
pp. 2196-2210 ◽  
Author(s):  
Jifang Pei ◽  
Yulin Huang ◽  
Weibo Huo ◽  
Yin Zhang ◽  
Jianyu Yang ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5966
Author(s):  
Ke Wang ◽  
Gong Zhang

The challenge of small data has emerged in synthetic aperture radar automatic target recognition (SAR-ATR) problems. Most SAR-ATR methods are data-driven and require a lot of training data that are expensive to collect. To address this challenge, we propose a recognition model that incorporates meta-learning and amortized variational inference (AVI). Specifically, the model consists of global parameters and task-specific parameters. The global parameters, trained by meta-learning, construct a common feature extractor shared between all recognition tasks. The task-specific parameters, modeled by probability distributions, can adapt to new tasks with a small amount of training data. To reduce the computation and storage cost, the task-specific parameters are inferred by AVI implemented with set-to-set functions. Extensive experiments were conducted on a real SAR dataset to evaluate the effectiveness of the model. The results of the proposed approach compared with those of the latest SAR-ATR methods show the superior performance of our model, especially on recognition tasks with limited data.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5312
Author(s):  
Yanni Zhang ◽  
Yiming Liu ◽  
Qiang Li ◽  
Jianzhong Wang ◽  
Miao Qi ◽  
...  

Recently, deep learning-based image deblurring and deraining have been well developed. However, most of these methods fail to distill the useful features. What is more, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from a high computational burden. We propose a lightweight fusion distillation network (LFDN) for image deblurring and deraining to solve the above problems. The proposed LFDN is designed as an encoder–decoder architecture. In the encoding stage, the image feature is reduced to various small-scale spaces for multi-scale information extraction and fusion without much information loss. Then, a feature distillation normalization block is designed at the beginning of the decoding stage, which enables the network to distill and screen valuable channel information of feature maps continuously. Besides, an information fusion strategy between distillation modules and feature channels is also carried out by the attention mechanism. By fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring and deraining results with a smaller number of parameters and outperform the existing methods in model complexity.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu Li ◽  
Zeling Xu ◽  
Wenkai Han ◽  
Huiluo Cao ◽  
Ramzan Umarov ◽  
...  

Abstract Background The spread of antibiotic resistance has become one of the most urgent threats to global health, which is estimated to cause 700,000 deaths each year globally. Its surrogates, antibiotic resistance genes (ARGs), are highly transmittable between food, water, animal, and human to mitigate the efficacy of antibiotics. Accurately identifying ARGs is thus an indispensable step to understanding the ecology, and transmission of ARGs between environmental and human-associated reservoirs. Unfortunately, the previous computational methods for identifying ARGs are mostly based on sequence alignment, which cannot identify novel ARGs, and their applications are limited by currently incomplete knowledge about ARGs. Results Here, we propose an end-to-end Hierarchical Multi-task Deep learning framework for ARG annotation (HMD-ARG). Taking raw sequence encoding as input, HMD-ARG can identify, without querying against existing sequence databases, multiple ARG properties simultaneously, including if the input protein sequence is an ARG, and if so, what antibiotic family it is resistant to, what resistant mechanism the ARG takes, and if the ARG is an intrinsic one or acquired one. In addition, if the predicted antibiotic family is beta-lactamase, HMD-ARG further predicts the subclass of beta-lactamase that the ARG is resistant to. Comprehensive experiments, including cross-fold validation, third-party dataset validation in human gut microbiota, wet-experimental functional validation, and structural investigation of predicted conserved sites, demonstrate not only the superior performance of our method over the state-of-art methods, but also the effectiveness and robustness of the proposed method. Conclusions We propose a hierarchical multi-task method, HMD-ARG, which is based on deep learning and can provide detailed annotations of ARGs from three important aspects: resistant antibiotic class, resistant mechanism, and gene mobility. We believe that HMD-ARG can serve as a powerful tool to identify antibiotic resistance genes and, therefore mitigate their global threat. Our method and the constructed database are available at http://www.cbrc.kaust.edu.sa/HMDARG/.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zongyong Cui ◽  
Zongjie Cao ◽  
Jianyu Yang ◽  
Hongliang Ren

A hierarchical recognition system (HRS) based on constrained Deep Belief Network (DBN) is proposed for SAR Automatic Target Recognition (SAR ATR). As a classical Deep Learning method, DBN has shown great performance on data reconstruction, big data mining, and classification. However, few works have been carried out to solve small data problems (like SAR ATR) by Deep Learning method. In HRS, the deep structure and pattern classifier are combined to solve small data classification problems. After building the DBN with multiple Restricted Boltzmann Machines (RBMs), hierarchical features can be obtained, and then they are fed to classifier directly. To obtain more natural sparse feature representation, the Constrained RBM (CRBM) is proposed with solving a generalized optimization problem. Three RBM variants,L1-RNM,L2-RBM, andL1/2-RBM, are presented and introduced to HRS in this paper. The experiments on MSTAR public dataset show that the performance of the proposed HRS with CRBM outperforms current pattern recognition methods in SAR ATR, like PCA + SVM, LDA + SVM, and NMF + SVM.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hongqiao Wang ◽  
Yanning Cai ◽  
Guangyuan Fu ◽  
Shicheng Wang

Aiming at the multiple target recognition problems in large-scene SAR image with strong speckle, a robust full-process method from target detection, feature extraction to target recognition is studied in this paper. By introducing a simple 8-neighborhood orthogonal basis, a local multiscale decomposition method from the center of gravity of the target is presented. Using this method, an image can be processed with a multilevel sampling filter and the target’s multiscale features in eight directions and one low frequency filtering feature can be derived directly by the key pixels sampling. At the same time, a recognition algorithm organically integrating the local multiscale features and the multiscale wavelet kernel classifier is studied, which realizes the quick classification with robustness and high accuracy for multiclass image targets. The results of classification and adaptability analysis on speckle show that the robust algorithm is effective not only for the MSTAR (Moving and Stationary Target Automatic Recognition) target chips but also for the automatic target recognition of multiclass/multitarget in large-scene SAR image with strong speckle; meanwhile, the method has good robustness to target’s rotation and scale transformation.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Xiaohui Zhao ◽  
Yicheng Jiang ◽  
Tania Stathaki

A strategy is introduced for achieving high accuracy in synthetic aperture radar (SAR) automatic target recognition (ATR) tasks. Initially, a novel pose rectification process and an image normalization process are sequentially introduced to produce images with less variations prior to the feature processing stage. Then, feature sets that have a wealth of texture and edge information are extracted with the utilization of wavelet coefficients, where more effective and compact feature sets are acquired by reducing the redundancy and dimensionality of the extracted feature set. Finally, a group of discrimination trees are learned and combined into a final classifier in the framework of Real-AdaBoost. The proposed method is evaluated with the public release database for moving and stationary target acquisition and recognition (MSTAR). Several comparative studies are conducted to evaluate the effectiveness of the proposed algorithm. Experimental results show the distinctive superiority of the proposed method under both standard operating conditions (SOCs) and extended operating conditions (EOCs). Moreover, our additional tests suggest that good recognition accuracy can be achieved even with limited number of training images as long as these are captured with appropriately incremental sample step in target poses.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1972
Author(s):  
Dhiraj Neupane ◽  
Jongwon Seok

Underwater acoustics has been implemented mostly in the field of sound navigation and ranging (SONAR) procedures for submarine communication, the examination of maritime assets and environment surveying, target and object recognition, and measurement and study of acoustic sources in the underwater atmosphere. With the rapid development in science and technology, the advancement in sonar systems has increased, resulting in a decrement in underwater casualties. The sonar signal processing and automatic target recognition using sonar signals or imagery is itself a challenging process. Meanwhile, highly advanced data-driven machine-learning and deep learning-based methods are being implemented for acquiring several types of information from underwater sound data. This paper reviews the recent sonar automatic target recognition, tracking, or detection works using deep learning algorithms. A thorough study of the available works is done, and the operating procedure, results, and other necessary details regarding the data acquisition process, the dataset used, and the information regarding hyper-parameters is presented in this article. This paper will be of great assistance for upcoming scholars to start their work on sonar automatic target recognition.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yinjie Xie ◽  
Wenxin Dai ◽  
Zhenxin Hu ◽  
Yijing Liu ◽  
Chuan Li ◽  
...  

Among many improved convolutional neural network (CNN) architectures in the optical image classification, only a few were applied in synthetic aperture radar (SAR) automatic target recognition (ATR). One main reason is that direct transfer of these advanced architectures for the optical images to the SAR images easily yields overfitting due to its limited data set and less features relative to the optical images. Thus, based on the characteristics of the SAR image, we proposed a novel deep convolutional neural network architecture named umbrella. Its framework consists of two alternate CNN-layer blocks. One block is a fusion of six 3-layer paths, which is used to extract diverse level features from different convolution layers. The other block is composed of convolution layers and pooling layers are mainly utilized to reduce dimensions and extract hierarchical feature information. The combination of the two blocks could extract rich features from different spatial scale and simultaneously alleviate overfitting. The performance of the umbrella model was validated by the Moving and Stationary Target Acquisition and Recognition (MSTAR) benchmark data set. This architecture could achieve higher than 99% accuracy for the classification of 10-class targets and higher than 96% accuracy for the classification of 8 variants of the T72 tank, even in the case of diverse positions located by targets. The accuracy of our umbrella is superior to the current networks applied in the classification of MSTAR. The result shows that the umbrella architecture possesses a very robust generalization capability and will be potential for SAR-ART.


Sign in / Sign up

Export Citation Format

Share Document