scholarly journals Multiphoton Laser Fabrication of Hybrid Photo-Activable Biomaterials

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5891
Author(s):  
Margaux Bouzin ◽  
Amirbahador Zeynali ◽  
Mario Marini ◽  
Laura Sironi ◽  
Riccardo Scodellaro ◽  
...  

The possibility to shape stimulus-responsive optical polymers, especially hydrogels, by means of laser 3D printing and ablation is fostering a new concept of “smart” micro-devices that can be used for imaging, thermal stimulation, energy transducing and sensing. The composition of these polymeric blends is an essential parameter to tune their properties as actuators and/or sensing platforms and to determine the elasto-mechanical characteristics of the printed hydrogel. In light of the increasing demand for micro-devices for nanomedicine and personalized medicine, interest is growing in the combination of composite and hybrid photo-responsive materials and digital micro-/nano-manufacturing. Existing works have exploited multiphoton laser photo-polymerization to obtain fine 3D microstructures in hydrogels in an additive manufacturing approach or exploited laser ablation of preformed hydrogels to carve 3D cavities. Less often, the two approaches have been combined and active nanomaterials have been embedded in the microstructures. The aim of this review is to give a short overview of the most recent and prominent results in the field of multiphoton laser direct writing of biocompatible hydrogels that embed active nanomaterials not interfering with the writing process and endowing the biocompatible microstructures with physically or chemically activable features such as photothermal activity, chemical swelling and chemical sensing.

2021 ◽  
Vol 61 ◽  
pp. 102427
Author(s):  
Xiaoyan Sun ◽  
Zikun Chang ◽  
Li Zeng ◽  
Xinran Dong ◽  
Youwang Hu ◽  
...  

2021 ◽  
pp. 2100178
Author(s):  
Wenguang Yang ◽  
Honghui Chu ◽  
Shuxiang Cai ◽  
Wenfeng Liang ◽  
Haibo Yu ◽  
...  

2020 ◽  
Vol 10 (23) ◽  
pp. 8563
Author(s):  
Sangmo Koo

Two-photon polymerization (TPP) based on the femtosecond laser (fs laser) direct writing technique in the realization of high-resolution three-dimensional (3D) shapes is spotlighted as a unique and promising processing technique. It is also interesting that TPP can be applied to various applications in not only optics, chemistry, physics, biomedical engineering, and microfluidics but also micro-robotics systems. Effort has been made to design innovative microscale actuators, and research on how to remotely manipulate actuators is also constantly being conducted. Various manipulation methods have been devised including the magnetic, optical, and acoustic control of microscale actuators, demonstrating the great potential for non-contact and non-invasive control. However, research related to the precise control of microscale actuators is still in the early stages, and in-depth research is needed for the efficient control and diversification of a range of applications. In the future, the combination of the fs laser-based fabrication technique for the precise fabrication of microscale actuators/robots and their manipulation can be established as a next-generation processing method by presenting the possibility of applications to various areas.


1989 ◽  
Vol 43 (1-4) ◽  
pp. 68-73 ◽  
Author(s):  
C. Garrido ◽  
D. Braichotte ◽  
H. van den Bergh ◽  
B. León ◽  
M. Pérez-Amor

Sign in / Sign up

Export Citation Format

Share Document