scholarly journals Ultrasound Assessment of Honey Using Fast Fourier Transform

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6748
Author(s):  
Montaña Rufo ◽  
Antonio Jiménez ◽  
Jesús M. Paniagua ◽  
Alberto González-Mohíno

Ultrasound inspection permits the characteristics of some foodstuffs to be determined easily and cheaply. This experimental study included the determination of various ultrasound parameters provided by the fast Fourier transform (FFT) which had not previously been considered in testing the physical properties of different varieties of honey. These parameters are practically independent of the criteria adopted for their calculation, unlike other ultrasound variables such as pulse velocity or attenuation whose determination can vary depending on those criteria. The study was carried out on four varieties of honey (Eucalyptus, Heather, Thyme, and Thousand Flowers) using 500-kHz transducers. A simultaneously performed honey texture analysis (Texture Profile Analysis-TPA) showed significant linear correlations between the ultrasound variables provided by FFT and the texture parameters. The FFT parameters distinguished between each of the four honey varieties studied.

2009 ◽  
Vol 26 (10) ◽  
pp. 2172-2181 ◽  
Author(s):  
Juan Huo ◽  
Daren Lu

Abstract The threshold method is commonly used to determine cloud in a sky image. This paper evaluates the method by numerical simulation and shows that the aerosol optical depth (AOD) is a key factor that influences the accuracy. Particularly when the visibility is low, a single threshold method is inappropriate. To improve the accuracy of cloud determination from low-visibility sky images, an integrated cloud-determination algorithm is presented that is based on the fast Fourier transform, symmetrical image features, and threshold methods. The preliminary comparison tests show that the new integrated method improves the ability to determine cloud under lower-visibility conditions.


2018 ◽  
Vol 14 (s1) ◽  
pp. 69-78
Author(s):  
G. Ivanov ◽  
A. Bogdanova ◽  
G. Zsivanovits

Texture development during ripening of cow milk Kashkaval cheese at different temperatures (9±1 °С, 11±1 °С and 13±1 °С) was studied. Texture parameters representing cheese hardness, cohesiveness, springiness, adhesiveness, gumminess and chewiness were determined by texture profile analysis. It was found that hardness, gumminess and adhesiveness of all studied samples increased, while springiness and cohesiveness decreased during ripening. An increase of chewiness values during the first stages of ripening was observed, followed by a decrease to the 60th day. It was found that ripening time, as well as ripening temperature had a significant effect on the changes in Kashakaval texture parameters. Cheese samples ripened at higher temperatures had lower values for hardness, cohesiveness, gumminess and chewiness. Ripening temperature had no significant effect on the changes in springiness and adhesiveness of the studied samples. The results obtained showed that by an appropriate combination of the two factors, ripening time and temperature, the changes in the Kashkaval cheese texture can be controlled, which is important for the quality of the final product.


Sign in / Sign up

Export Citation Format

Share Document