scholarly journals Performance Analyses of Energy Detection Based on Square-Law Combining in MIMO-OFDM Cognitive Radio Networks

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7678
Author(s):  
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begušić

Cognitive radio (CR) technology has the potential to detect and share the unutilized spectrum by enabling dynamic spectrum access. To detect the primary users’ (PUs) activity, energy detection (ED) is widely exploited due to its applicability when it comes to sensing a large range of PU signals, low computation complexity, and implementation costs. As orthogonal frequency-division multiplexing (OFDM) transmission has been proven to have a high resistance to interference, the ED of OFDM signals has become an important local spectrum-sensing (SS) concept in cognitive radio networks (CRNs). In combination with multiple-input multiple-output (MIMO) transmissions, MIMO-OFDM-based transmissions have started to become a widely accepted air interface, which ensures a significant improvement in spectral efficiency. Taking into account the future massive implementation of MIMO-OFDM systems in the fifth and sixth generation of mobile networks, this work introduces a mathematical formulation of expressions that enable the analysis of ED performance based on the square-law combining (SLC) method in MIMO-OFDM systems. The analysis of the ED performance was done through simulations performed using the developed algorithms that enable the performance analysis of the ED process based on the SLC in the MIMO-OFDM systems having a different number of transmit (Tx) and receive (Rx) communication branches. The impact of the distinct factors including the PU Tx power, the false alarm probability, the number of Tx and Rx MIMO branches, the number of samples in the ED process, and the different modulation techniques on the ED performance in environments with different levels of signal-to-noise ratios are presented. A comprehensive analysis of the obtained results indicated how the appropriate selection of the analyzed factors can be used to enhance the ED performance of MIMO-OFDM-based CRNs.

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6881
Author(s):  
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begusic

Cognitive radio technology enables spectrum sensing (SS), which allows the secondary user (SU) to access vacant frequency bands in the periods when the primary user (PU) is not active. Due to its minute implementation complexity, the SS approach based on energy detection (ED) of the PU signal has been analyzed in this paper. Analyses were performed for detecting PU signals by the SU in communication systems exploiting multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) transmission technology. To perform the analyses, a new algorithm for simulating the ED process based on a square-law combining (SLC) technique was developed. The main contribution of the proposed algorithm is enabling comprehensive simulation analyses of ED performance based on the SLC method for versatile combinations of operating parameter characteristics for different working environments of MIMO-OFDM systems. The influence of a false alarm on the detection probability of PU signals impacted by operating parameters such as the signal-to-noise ratios, the number of samples, the PU transmit powers, the modulation types and the number of the PU transmit and SU receive branches of the MIMO-OFDM systems have been analyzed in the paper. Simulation analyses are performed by running the proposed algorithm, which enables precise selection of and variation in the operating parameters, the level of noise uncertainty and the detection threshold in different simulation scenarios. The presented analysis of the obtained simulation results indicates how the considered operating parameters impact the ED efficiency of symmetric and asymmetric MIMO-OFDM systems.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Andreas Merentitis ◽  
Dionysia Triantafyllopoulou

An algorithm for cooperative Dynamic Spectrum Access in Cognitive Radio networks is presented. The proposed algorithm utilizes Medium Access Control layer mechanisms for message exchange between secondary nodes that operate in license exempt spectrum bands, in order to achieve interference mitigation. A fuzzy logic reasoner is utilized in order to take into account the effect of the coexistence of a large number of users in the interference as well as to cope for uncertainties in the message exchange, caused by the nodes' mobility and the large delays in the updating of the necessary information. The proposed algorithm is applied in Filter Bank Multicarrier, as well as Orthogonal Frequency Division Multiplexing systems, and its performance is evaluated through extensive simulations that cover a wide range of typical scenarios. Experimental results indicate improved behaviour compared to previous schemes, especially in the case of uncertainties that cause underestimation of the interference levels.


Author(s):  
Dileep Reddy Bolla ◽  
Jijesh J J ◽  
Mahaveer Penna ◽  
Shiva Shankar

Back Ground/ Aims:: Now-a-days in the Wireless Communications some of the spectrum bands are underutilized or unutilized; the spectrum can be utilized properly by using the Cognitive Radio Techniques using the Spectrum Sensing mechanisms. Objectives:: The prime objective of the research work carried out is to achieve the energy efficiency and to use the spectrum effectively by using the spectrum management concept and achieve better throughput, end to end delay etc., Methods:: The detection of the spectrum hole plays a vital role in the routing of Cognitive Radio Networks (CRNs). While detecting the spectrum holes and the routing, sensing is impacted by the hidden node issues and exposed node issues. The impact of sensing is improved by incorporating the Cooperative Spectrum Sensing (CSS) techniques. Along with these issues the spectrum resources changes time to time in the routing. Results:: All the issues are addressed with An Energy Efficient Spectrum aware Routing (EESR) protocol which improves the timeslot and the routing schemes. The overall network life time is improved with the aid of residual energy concepts and the overall network performance is improved. Conclusion:: The proposed protocol (EESR) is an integrated system with spectrum management and the routing is successfully established to communication in the network and further traffic load is observed to be balanced in the protocol based on the residual energy in a node and further it improves the Network Lifetime of the Overall Network and the Individual CR user, along with this the performance of the proposed protocol outperforms the conventional state of art routing protocols.


2019 ◽  
Vol 16 (12) ◽  
pp. 34-46
Author(s):  
Ehab F. Badran ◽  
Amr A. Bashir ◽  
Amira I. Zaki ◽  
Waleed K. Badawi

Sign in / Sign up

Export Citation Format

Share Document