scholarly journals Opto-Mechatronics System for Train-Track Micro Deformation Sensing

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 296
Author(s):  
Weibing Gan ◽  
Shiyu Tu ◽  
Yuan Tao ◽  
Lingyun Ai ◽  
Cui Zhang ◽  
...  

In this paper, we proposed and experimentally demonstrated an opto-mechatronics system to detect the micro-deformation of tracks caused by running trains. The fiber Bragg grating (FBG) array acting as sensing elements has a low peak reflectivity of around −40 dB. The center wavelengths were designed to alternate between 1551 nm and 1553 nm at 25 °C. Based on dual-wavelength, wavelength-division multiplexing (WDM)/time-division multiplexing (TDM) hybrid networking, we adopted optical time-domain reflectometry (OTDR) technology and a wavelength-scanning interrogation method to achieve FBG array signal demodulation. The field experimental results showed that the average wavelength shift of the FBG array caused by the passage of the lightest rail vehicle was −225 pm. Characteristics of the train-track system, such as track occupancy, train length, number of wheels, train speed, direction, and loading can be accurately obtained in real time. This opto-mechatronics system can meet the requirements of 600 mm spatial resolution, long distance, and large capacity for monitoring the train-track system. This method exhibits great potential for applications in large-scale train-track monitoring, which is meaningful for the safe operation of rail transport.

2013 ◽  
Vol 718-720 ◽  
pp. 636-640
Author(s):  
Fang Dong Zhu ◽  
Dong Sheng Zhang ◽  
Yong Xing Guo ◽  
Li Tong Li

A fiber Bragg grating (FBG) sensing network for vibration measurement is proposed and demonstrated in this paper. The light source of the described sensing technique is an erbium-doped fiber laser applying a 980-nm laser diode and a fiber Fabry-Perot tunable filter. The fiber laser has a 40nm tuning range, allowing many vibration sensors to be multiplexed on the same fiber. Reflected light wavelength shift of the FBG sensor caused by strain variation is converted to intensity deviation, which avoids a complex demodulation process. This sensing scheme can effectively increase the demodulation speed of sensing system up to 20 KHz. At least 20 FBGs can be multiplexed alone a fiber.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dingding Zhang ◽  
Chenyang Ma ◽  
Yanyan Duan ◽  
Wengang Du ◽  
Jinxuan Liu ◽  
...  

Real-time monitoring of settlement and deformation within a coal mine’s deep quaternary unconsolidated strata presents challenges with installation and signal analysis. This paper presents results from successfully installing a field-scale fiber Bragg grating (FBG) sensing system in a deep borehole for the purpose of achieving real-time monitoring of the settlement and deformation in a deep unconsolidated stratum. A 152 m deep by 133 mm diameter borehole was used to embed an array of 24 FBG sensors in 12 layers of gravel and clay from between 92.4 m and 148.7 m of unconsolidated quaternary strata. A wavelength bandwidth of ±4.5 nm was used with a wavelength division multiplexing and spatial division multiplexing technique to compose a 4-by-6 sensor array. During the four stages of installation, the real-time transmission characteristics and the changes in the FBG wavelength for this sensing system were evaluated. While the FBG sensing system was stable after installation, it was clearly shown that the engineering techniques associated with both positioning and grouting influenced the mechanical properties and transmission characteristics of the system. After installation, the sensor survival rate was found to be 78.26% with a maximum FBG wavelength shift of 1.447 nm. This field-scale installation has provided information and experience that will improve future installations of buried fiber optic sensing technology throughout the underground coal mine industry.


2012 ◽  
Vol 3 (4) ◽  
pp. 52-62
Author(s):  
Risto Honkanen ◽  
Ville Leppänen

The authors present a WDM (Wavelength-Division Multiplexing) based all-optical network architecture, and study scheduled routing on it. Their architecture can be seen as a communication system of parallel multi-core computer or a large-scale high bandwidth routing switch of e.g., telecommunication network. The goal is to construct such a scalable architecture and a supporting routing protocol for it so that no electro-optical conversions are needed on the routing paths, all packets are routed along one of the shortest paths, processor nodes can inject packets constantly into the network, and all the packets injected into the routing machinery reach their targets without collisions. The authors’ CSOT is a sparse network. A large fraction of the nodes are intermediate nodes instead of processor nodes. Only the processor nodes are sources and sinks of packets. The number of all nodes is and is the number of processor nodes in our construction. For scheduled routing to work, the authors consider routing problems as a set of h-relations. They achieved work-optimal routing of -relations for a reasonable size of . The efficiency of routing is based on routing latency hiding which is made possible by WDM and sparseness based increase bandwidth per processor node.


2013 ◽  
Vol 1538 ◽  
pp. 363-369
Author(s):  
Di Liang ◽  
Géza Kurczveil ◽  
Marco Fiorentino ◽  
Sudharsanan Srinivasan ◽  
David A. Fattal ◽  
...  

ABSTRACTHybrid silicon laser is a promising solution to enable high-performance light source on large-scale, silicon-based photonic integrated circuits (PICs). As a compact laser cavity design, hybrid microring lasers are attractive for their intrinsic advantages of small footprint, low power consumption and flexibility in wavelength division multiplexing (WDM), etc. Here we review recent progress in unidirectional microring lasers and device thermal management. Unidirectional emission is achieved by integrating a passive reflector that feeds laser emission back into laser cavity to introduce extra unidirectional gain. Up to 4X of device heating reduction is simulated by adding a metal thermal shunt to the laser to “short” heat to the silicon substrate through buried oxide layer (BOX) in the silicon-on-insulator (SOI) substrate. Obvious device heating reduction is also observed in experiment.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740005 ◽  
Author(s):  
Zhu Diao ◽  
Vincent T. K. Sauer ◽  
Wayne K. Hiebert

Recent developments in integrated on-chip nano-optomechanical systems are reviewed. Silicon-based nano-optomechanical devices are fabricated by a two-step process, where the first step is a foundry-enabled photonic circuits patterning and the second step involves in-house mechanical device release. We show theoretically that the enhanced responsivity of near-field optical transduction of mechanical displacement in on-chip nano-optomechanical systems originates from the finesse of the optical cavity to which the mechanical device couples. An enhancement in responsivity of more than two orders of magnitude has been observed when compared side-by-side with free-space interferometry readout. We further demonstrate two approaches to facilitate large-scale device integration, namely, wavelength-division multiplexing and frequency-division multiplexing. They are capable of significantly simplifying the design complexity for addressing individual nano-optomechanical devices embedded in a large array.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Subhrajit Pradhan ◽  
Bijayananda Patnaik ◽  
Rashmita Kumari Panigrahy

AbstractIn this work, an optical hybrid communication system is proposed. It is a combination of diffused link (DL) configuration of free space optics (FSO) setup and fiber optic setup. It is a 16-channel dense wavelength division multiplexing (DWDM) system, with 400 Gbps/channel data rate. It uses dual polarization-quadrature phase shift keying (DP-QPSK) modulation technique for all the setups. Bit error rate (BER), eye diagram, quality actor (Q-factor), optical time domain reflectometer (OTDR), optical spectrum analyzer (OSA) signals are considered as performance parameters of the proposed system. It is found that the link distance is 340 m for DL setup and 1,000 km for fiber setup. The system will be very much useful for solving first mile, last mile problem with long distance optical communication applications in 5 G era.


Author(s):  
Mamta Janagal ◽  
Gurpreet Kaur ◽  
Varinder Mandley ◽  
Tanvi Sood

In this paper, the impact of different channel spacing on proposed system setup is investigated for long distance communication. This wavelength division multiplexing (WDM), dense wavelength division multiplexing (DWDM) and ultradense wavelength division multiplexing (UDWDM) is evaluated by considering the signal quality factor, bit error rate, optical gain, and received power for different signal input power and for distance. It is observed that at -5 dBm of signal input power the system covers 130 km with acceptable BER (10-8) and Q-factor (14dB).


Sign in / Sign up

Export Citation Format

Share Document