scholarly journals A Highly Secure IoT Firmware Update Mechanism Using Blockchain

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 530
Author(s):  
Woei-Jiunn Tsaur ◽  
Jen-Chun Chang ◽  
Chin-Ling Chen

Internet of Things (IoT) device security is one of the crucial topics in the field of information security. IoT devices are often protected securely through firmware update. Traditional update methods have their shortcomings, such as bandwidth limitation and being attackers’ easy targets. Although many scholars proposed a variety of methods that are based on the blockchain technology to update the firmware, there are still demerits existing in their schemes, including large storage space and centralized stored firmware. In summary, this research proposes a highly secure and efficient protection mechanism that is based on the blockchain technology to improve the above disadvantages. Therefore, this study can reduce the need of storage space and improve system security. The proposed system has good performance in some events, including firmware integrity, security of IoT device connection, system security, and device anonymity. Furthermore, we confirm the high security and practical feasibility of the proposed system by comparing with the existing methods.

Author(s):  
Yahye Adam Omar ◽  
S B Goyal ◽  
Vijayakumar Varadarajan

Author(s):  
R. Priyadharsini

Blockchain is the technology that provides security through its cryptography. IOT (Internet of Things) enhances the usage of software and hardware power in efficient way. The IOT Devices can be configured and controlled by blockchain. In this, the analysis of blockchain in IOT Security presented. The Key management is one of the biggest features for blockchain to be successful in the technology. As security is essential for any technology to be successful, the importance is considered and revealed about the security of IOT through blockchain technology. The features and considerations made would be useful for further research on blockchain in IOT Security.


2013 ◽  
Vol 427-429 ◽  
pp. 2237-2244
Author(s):  
Jie Li ◽  
Xing Wei Wang ◽  
Min Huang

Survivability is an important concern in the optical network. In order to offer an effective and efficient protection mechanism that meeting both delay constraint and availability guarantees for real-time services in the optical network, a shared path protection mechanism based on delay constraint is proposed in this paper. Thinking of the processing delay and the propagation delay as main factors which have great effect on the delay of real-time services, the mechanism designs the routing and wavelength assignment schemes for the working path and the protection path. Simulation results show that the proposed mechanism is both feasible and effective.


2022 ◽  
Vol 54 (7) ◽  
pp. 1-34
Author(s):  
Sophie Dramé-Maigné ◽  
Maryline Laurent ◽  
Laurent Castillo ◽  
Hervé Ganem

The Internet of Things is taking hold in our everyday life. Regrettably, the security of IoT devices is often being overlooked. Among the vast array of security issues plaguing the emerging IoT, we decide to focus on access control, as privacy, trust, and other security properties cannot be achieved without controlled access. This article classifies IoT access control solutions from the literature according to their architecture (e.g., centralized, hierarchical, federated, distributed) and examines the suitability of each one for access control purposes. Our analysis concludes that important properties such as auditability and revocation are missing from many proposals while hierarchical and federated architectures are neglected by the community. Finally, we provide an architecture-based taxonomy and future research directions: a focus on hybrid architectures, usability, flexibility, privacy, and revocation schemes in serverless authorization.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yang Xu ◽  
Guojun Wang ◽  
Jidian Yang ◽  
Ju Ren ◽  
Yaoxue Zhang ◽  
...  

The emerging network computing technologies have significantly extended the abilities of the resource-constrained IoT devices through the network-based service sharing techniques. However, such a flexible and scalable service provisioning paradigm brings increased security risks to terminals due to the untrustworthy exogenous service codes loading from the open network. Many existing security approaches are unsuitable for IoT environments due to the high difficulty of maintenance or the dependencies upon extra resources like specific hardware. Fortunately, the rise of blockchain technology has facilitated the development of service sharing methods and, at the same time, it appears a viable solution to numerous security problems. In this paper, we propose a novel blockchain-based secure service provisioning mechanism for protecting lightweight clients from insecure services in network computing scenarios. We introduce the blockchain to maintain all the validity states of the off-chain services and edge service providers for the IoT terminals to help them get rid of untrusted or discarded services through provider identification and service verification. In addition, we take advantage of smart contracts which can be triggered by the lightweight clients to help them check the validities of service providers and service codes according to the on-chain transactions, thereby reducing the direct overhead on the IoT devices. Moreover, the adoptions of the consortium blockchain and the proof of authority consensus mechanism also help to achieve a high throughput. The theoretical security analysis and evaluation results show that our approach helps the lightweight clients get rid of untrusted edge service providers and insecure services effectively with acceptable latency and affordable costs.


2022 ◽  
pp. 89-103
Author(s):  
Subashini B.

Blockchain and the internet of things (IoT) are progressive technologies that are changing the world with additional special care within the healthcare system. In healthcare, IoT is a remote patient monitoring system that allows IoT devices to collect patient information such as remote monitoring, test results, pharmacy detailsm and medical insurance details, and allows doctors to provide excellent care. In order to facilitate data sharing among different hospitals and other organizations, it is necessary to secure data with caution. Blockchain is a decentralized, distributed, and an immutable digital ledger that records healthcare transactions using peer-to-peer technology in an extremely secure manner. It uses the cloud environment to store the huge amount of data on healthcare. The data generated from IoT devices uses blockchain technology to share medical information being analyzed by healthcare professionals in different hospitals in a secure manner. The objective is to benefit patient monitoring remotely and overcome the problem of information blocking.


Author(s):  
K. Dinesh Kumar ◽  
Venkata Rathnam T. ◽  
Venkata Ramana R. ◽  
M. Sudhakara ◽  
Ravi Kumar Poluru

Internet of things (IoT) technology plays a vital role in the current technologies because IoT develops a network by integrating different kinds of objects and sensors to create the communication among objects directly without human interaction. With the presence of internet of things technology in our daily comes smart thinking and various advantages. At the same time, secure systems have been a most important concern for the protection of information systems and networks. However, adopting traditional security management systems in the internet of things leads several issues due to the limited privacy and policies like privacy standards, protocol stacks, and authentication rules. Usually, IoT devices has limited network capacities, storage, and computing processors. So they are having more chances to attacks. Data security, privacy, and reliability are three main challenges in the IoT security domain. To address the solutions for the above issues, IoT technology has to provide advanced privacy and policies in this large incoming data source. Blockchain is one of the trending technologies in the privacy management to provide the security. So this chapter is focused on the blockchain technologies which can be able to solve several IoT security issues. This review mainly focused on the state-of-the-art IoT security issues and vulnerabilities by existing review works in the IoT security domains. The taxonomy is presented about security issues in the view of communication, architecture, and applications. Also presented are the challenges of IoT security management systems. The main aim of this chapter is to describe the importance of blockchain technology in IoT security systems. Finally, it highlights the future directions of blockchain technology roles in IoT systems, which can be helpful for further improvements.


Sign in / Sign up

Export Citation Format

Share Document