Towards a Framework for Testing the Security of IoT Devices Consistently

Author(s):  
Gurjan Lally ◽  
Daniele Sgandurra
Keyword(s):  
2022 ◽  
Vol 54 (7) ◽  
pp. 1-34
Author(s):  
Sophie Dramé-Maigné ◽  
Maryline Laurent ◽  
Laurent Castillo ◽  
Hervé Ganem

The Internet of Things is taking hold in our everyday life. Regrettably, the security of IoT devices is often being overlooked. Among the vast array of security issues plaguing the emerging IoT, we decide to focus on access control, as privacy, trust, and other security properties cannot be achieved without controlled access. This article classifies IoT access control solutions from the literature according to their architecture (e.g., centralized, hierarchical, federated, distributed) and examines the suitability of each one for access control purposes. Our analysis concludes that important properties such as auditability and revocation are missing from many proposals while hierarchical and federated architectures are neglected by the community. Finally, we provide an architecture-based taxonomy and future research directions: a focus on hybrid architectures, usability, flexibility, privacy, and revocation schemes in serverless authorization.


Author(s):  
Arbab Waseem Abbas ◽  
Safdar Nawaz Khan Marwat ◽  
Salman Ahmed ◽  
Abdul Hafeez ◽  
Khalil Ullah ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 55 ◽  
Author(s):  
Giuseppe Nebbione ◽  
Maria Carla Calzarossa

IoT technologies are becoming pervasive in public and private sectors and represent presently an integral part of our daily life. The advantages offered by these technologies are frequently coupled with serious security issues that are often not properly overseen or even ignored. The IoT threat landscape is extremely wide and complex and involves a wide variety of hardware and software technologies. In this framework, the security of application layer protocols is of paramount importance since these protocols are at the basis of the communications among applications and services running on different IoT devices and on cloud/edge infrastructures. This paper offers a comprehensive survey of application layer protocol security by presenting the main challenges and findings. More specifically, the paper focuses on the most popular protocols devised in IoT environments for messaging/data sharing and for service discovery. The main threats of these protocols as well as the Common Vulnerabilities and Exposures (CVE) for their products and services are analyzed and discussed in detail. Good practices and measures that can be adopted to mitigate threats and attacks are also investigated. Our findings indicate that ensuring security at the application layer is very challenging. IoT devices are exposed to numerous security risks due to lack of appropriate security services in the protocols as well as to vulnerabilities or incorrect configuration of the products and services being deployed. Moreover, the constrained capabilities of these devices affect the types of security services that can be implemented.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 530
Author(s):  
Woei-Jiunn Tsaur ◽  
Jen-Chun Chang ◽  
Chin-Ling Chen

Internet of Things (IoT) device security is one of the crucial topics in the field of information security. IoT devices are often protected securely through firmware update. Traditional update methods have their shortcomings, such as bandwidth limitation and being attackers’ easy targets. Although many scholars proposed a variety of methods that are based on the blockchain technology to update the firmware, there are still demerits existing in their schemes, including large storage space and centralized stored firmware. In summary, this research proposes a highly secure and efficient protection mechanism that is based on the blockchain technology to improve the above disadvantages. Therefore, this study can reduce the need of storage space and improve system security. The proposed system has good performance in some events, including firmware integrity, security of IoT device connection, system security, and device anonymity. Furthermore, we confirm the high security and practical feasibility of the proposed system by comparing with the existing methods.


2019 ◽  
Vol 11 (6) ◽  
pp. 127 ◽  
Author(s):  
Michele De Donno ◽  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Antonio Bucchiarone ◽  
Manuel Mazzara

The Internet of Things (IoT) is rapidly changing our society to a world where every “thing” is connected to the Internet, making computing pervasive like never before. This tsunami of connectivity and data collection relies more and more on the Cloud, where data analytics and intelligence actually reside. Cloud computing has indeed revolutionized the way computational resources and services can be used and accessed, implementing the concept of utility computing whose advantages are undeniable for every business. However, despite the benefits in terms of flexibility, economic savings, and support of new services, its widespread adoption is hindered by the security issues arising with its usage. From a security perspective, the technological revolution introduced by IoT and Cloud computing can represent a disaster, as each object might become inherently remotely hackable and, as a consequence, controllable by malicious actors. While the literature mostly focuses on the security of IoT and Cloud computing as separate entities, in this article we provide an up-to-date and well-structured survey of the security issues of cloud computing in the IoT era. We give a clear picture of where security issues occur and what their potential impact is. As a result, we claim that it is not enough to secure IoT devices, as cyber-storms come from Clouds.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Erick Buenrostro ◽  
Daniel Cyrus ◽  
Tra Le ◽  
Vahid Emamian
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2647
Author(s):  
Stefan Balogh ◽  
Ondrej Gallo ◽  
Roderik Ploszek ◽  
Peter Špaček ◽  
Pavol Zajac

Internet of Things connects the physical and cybernetic world. As such, security issues of IoT devices are especially damaging and need to be addressed. In this treatise, we overview current security issues of IoT with the perspective of future threats. We identify three main trends that need to be specifically addressed: security issues of the integration of IoT with cloud and blockchains, the rapid changes in cryptography due to quantum computing, and finally the rise of artificial intelligence and evolution methods in the scope of security of IoT. We give an overview of the identified threats and propose solutions for securing the IoT in the future.


Author(s):  
Yash Choudhary ◽  
B Umamaheswari ◽  
Vijeta Kumawat

IoT or the Internet of things refers to all the physical devices connected to the internet. IoT consists of computing devices that are web-enabled and have the capability of sensing, collecting, and sending data. IoT provides the ability to remote control appliances and has many more applications. Since IoT is becoming a big part of society, it is necessary to ensure that these devices provide adequate security measures. This paper discusses various security issues in IoT systems like threats, vulnerabilities and some countermeasures which can be used to provide some security. Developing a secure device is now more important than ever, as with the increase in digitization, much of a user’s data is available on these devices. Securing data is a primary concern in any system, as internet-enabled devices are easier to hack. The idea of this paper is to spread awareness and improve the security of IoT devices.


Sign in / Sign up

Export Citation Format

Share Document