scholarly journals Lead-Free LiNbO3 Thick Film MEMS Kinetic Cantilever Beam Sensor/Energy Harvester

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 559
Author(s):  
Gabriel Barrientos ◽  
Giacomo Clementi ◽  
Carlo Trigona ◽  
Merieme Ouhabaz ◽  
Ludovic Gauthier-Manuel ◽  
...  

In this paper, we present integrated lead-free energy converters based on a suitable MEMS fabrication process with an embedded layer of LiNbO3. The fabrication technology has been developed to realize micromachined self-generating transducers to convert kinetic energy into electrical energy. The process proposed presents several interesting features with the possibility of realizing smaller scale devices, integrated systems, miniaturized mechanical and electromechanical sensors, and transducers with an active layer used as the main conversion element. When the system is fabricated in the typical cantilever configuration, it can produce a peak-to-peak open-circuit output voltage of 0.208 V, due to flexural deformation, and a power density of 1.9 nW·mm−3·g−2 at resonance, with values of acceleration and frequency of 2.4 g and 4096 Hz, respectively. The electromechanical transduction capability is exploited for sensing and power generation/energy harvesting applications. Theoretical considerations, simulations, numerical analyses, and experiments are presented to show the proposed LiNbO3-based MEMS fabrication process suitability. This paper presents substantial contributions to the state-of-the-art, proposing an integral solution regarding the design, modelling, simulation, realization, and characterization of a novel transducer.

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1261
Author(s):  
Young Chan Choi ◽  
June Soo Kim ◽  
Soon Yeol Kwon ◽  
Seong Ho Kong

In this paper we report on the improvement of performance by minimizing scallop size through deep reactive-ion etching (DRIE) of rotors in micro-wind turbines based on micro-electro-mechanical systems (MEMS) technology. The surface profile of an MEMS rotor can be controlled by modifying the scallop size of the DRIE surface through changing the process recipe. The fabrication of a planar disk-type MEMS rotor through the MEMS fabrication process was carried out, and for the comparison of the improvements in the performance of each rotor, RPM testing and open circuit output voltage experiments of stators and permanent magnets were performed. We found that the smooth etching profile with a minimized scallop size formed using DRIE results in improved rotation properties in MEMS-based wind turbine rotors.


2022 ◽  
Vol 20 (1) ◽  
pp. 108-116
Author(s):  
Monico Linares Aranda ◽  
Luis Hernandez Martinez ◽  
Javier De la Hidalga Wade

2013 ◽  
Vol 50 (3) ◽  
pp. 177-195
Author(s):  
D. Živković ◽  
A. Mitovski ◽  
S. Novaković ◽  
Lj. Balanović ◽  
D. Marković ◽  
...  
Keyword(s):  

Solar RRL ◽  
2021 ◽  
Author(s):  
Nathan Daem ◽  
Jennifer Dewalque ◽  
Felix Lang ◽  
Anthony Maho ◽  
Gilles Spronck ◽  
...  

2016 ◽  
Vol 27 (7) ◽  
pp. 7204-7210 ◽  
Author(s):  
S. M. Mane ◽  
P. M. Tirmali ◽  
D. J. Salunkhe ◽  
P. B. Joshi ◽  
C. B. Kolekar ◽  
...  

2014 ◽  
Vol 675-677 ◽  
pp. 1880-1886 ◽  
Author(s):  
Pedro D. Silva ◽  
Pedro Dinis Gaspar ◽  
J. Nunes ◽  
L.P.A Andrade

This paper provides a characterization of the electrical energy consumption of agrifood industries located in the central region of Portugal that use refrigeration systems to ensure the food safety. The study is based on the result analysis of survey data and energy characteristics of the participating companies belonging to the following agrifood sectors: meat, dairy, horticultural, distribution and wine. Through the quantification of energy consumption of companies is possible to determine the amount of greenhouse gases (GHGs) emissions indexed to its manufacturing process. Comparing the energy and GHGs emissions indexes of companies of a sector and between sectors is possible to create reference levels. With the results of this work is possible to rating the companies in relation to reference levels of energy and GHGs emissions and thus promote the rational use of energy by the application of practice measures for the improvement of the energy efficiency and the reduction of GHGs emissions.


2007 ◽  
Vol 546-549 ◽  
pp. 571-574
Author(s):  
Xing Wu Guo ◽  
Jian Wei Chang ◽  
Shang Ming He ◽  
Peng Huai Fu ◽  
Wen Jiang Ding

The corrosion behavior of GW63 (Mg-6wt.%Gd-3wt.%Y-0.4wt.%Zr) alloys in 5% NaCl aqueous solution has been investigated by PARSTAT 2273 instrument. The Open Circuit Potential (ECORR) vs. time curve, cyclic polarization (Pitting Scans) curve and Electrochemical Impedance Spectroscopy (EIS) was measured for the GW63 alloys in as-cast and T6 heat treatment conditions. The EIS results indicated that the tendency of impedance variation for as-cast condition was monotonic decreasing, however, the tendency of variation for T6 condition was not completely monotonic but the total tendency was decreasing. The values of impedance of GW63 alloy at 0.1 Hz are about 103 ohm-cm2 for as-cast and T6 condition.


Author(s):  
Hareesh K. R. Kommepalli ◽  
Andrew D. Hirsh ◽  
Christopher D. Rahn ◽  
Srinivas A. Tadigadapa

This paper introduces a novel T-beam actuator fabricated by a piezoelectric MEMS fabrication process. ICP-RIE etching from the front and back of a bulk PZT chip is used to produce stair stepped structures through the thickness with complex inplane shapes. Masked electrode deposition creates active and passive regions in the PZT structure. With a T-shaped crosssection, and bottom and top flange and web electrodes, a cantilevered beam can bend in-plane and out-of-plane with bimorph actuation in both directions. One of these T-beam actuators is fabricated and experimentally tested. An experimentally validated model predicts that the cross-section geometry can be optimized to produce higher displacement and blocking force.


Sign in / Sign up

Export Citation Format

Share Document