scholarly journals Recent Advances in In Vivo SPME Sampling

Separations ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 6 ◽  
Author(s):  
Riboni ◽  
Fornari ◽  
Bianchi ◽  
Careri

In vivo solid-phase microextraction (SPME) has been recently proposed for the extraction, clean-up and preconcentration of analytes of biological and clinical concern. Bioanalysis can be performed by sampling exo- or endogenous compounds directly in living organisms with minimum invasiveness. In this context, innovative and miniaturized devices characterized by both commercial and lab-made coatings for in vivo SPME tissue sampling have been proposed, thus assessing the feasibility of this technique for biomarker discovery, metabolomics studies or for evaluating the environmental conditions to which organisms can be exposed. Finally, the possibility of directly interfacing SPME to mass spectrometers represents a valuable tool for the rapid quali- and quantitative analysis of complex matrices. This review article provides a survey of in vivo SPME applications focusing on the extraction of tissues, cells and simple organisms. This survey will attempt to cover the state-of- the-art from 2014 up to 2019.

2016 ◽  
Vol 151 ◽  
pp. 216-223 ◽  
Author(s):  
Bessonneau Vincent ◽  
Ings Jennifer ◽  
McMaster Mark ◽  
Smith Richard ◽  
Bragg Leslie ◽  
...  

2012 ◽  
Vol 32 ◽  
pp. 31-39 ◽  
Author(s):  
Xu Zhang ◽  
Ken D. Oakes ◽  
Shuang Wang ◽  
Mark R. Servos ◽  
Shufen Cui ◽  
...  

2013 ◽  
Vol 125 (46) ◽  
pp. 12346-12348 ◽  
Author(s):  
Erasmus Cudjoe ◽  
Barbara Bojko ◽  
Inés de Lannoy ◽  
Victor Saldivia ◽  
Janusz Pawliszyn

2010 ◽  
Vol 93 (5) ◽  
pp. 1595-1599 ◽  
Author(s):  
Mohana Krishna Reddy Mudiam ◽  
Mahendra Pratap Singh ◽  
Debapratim Kar Chowdhuri ◽  
Ramesh Chandra Murthy

Abstract A simple, rapid, and solvent-free method for quantitative determination of benzene, toluene, and Xylene in exposed Drosophila larvae was developed using headspace solid-phase microextraction (HS-SPME) coupled to GC/MS. Larvae fed on standard Drosophila food mixed with benzene, toluene, and Xylene for 48 h were homogenized in Milli-Q water. Extraction of benzene, toluene, and Xylene was performed at 65C for 30 min on the SPME fiber (silica-fused). Subsequently, the fiber was desorbed in the GC injection port, followed by GC/MS analysis in the selected-ion monitoring mode. An external calibration curve was used for the quantification of benzene, toluene, and Xylene in the exposed organism. Recoveries were in the range of 78-82% (intraday) and 76-81% (interday) in larvae, and 9196 (intraday) and 87-92% (interday) in the diet. LOD with an S/N of 3:1 and LOQ with an S/N of 10:1 were in the range of 0.010.023 and 0.0340.077 µg/L, respectively. Percent RSD values for benzene, toluene, and Xylene were in the range of 0.500.81 (intraday) and 0.891.23 (interday) for retention time, and 2.163.85 (intraday) and 2.994.95 (interday) for peak concentration, showing good repeatability. This method was sensitive enough to quantitate benzene, toluene, and Xylene in small exposed organisms like Drosophila larvae. The SPME/GC/MS method developed may have wider applications in various in vivo toxicological studies.


Bioanalysis ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 1523-1534 ◽  
Author(s):  
Momna Aslam ◽  
Carlos Feleder ◽  
Ryan J Newsom ◽  
Serge Campeau ◽  
Florin Marcel Musteata

Aim: Solid-phase microextraction is proposed to measure concentrations of anandamide and 2-arachidonoyl glycerol in live rat brains in response to stress. Materials & methods: Solid-phase microextraction fibers were prepared from steel with 1.5 mm extraction coating. 24 male rats were divided into groups based on brain region, stria terminalis or posterior hypothalamus and loud noise or control groups. The fibers were desorbed in acetonitrile-water (75:25) and analyzed by ultraperformance LC–MS/MS. The linear range of the method was 0.05–50 ng/ml and the in vivo concentrations were found to be between 0.3 and 40 ng/ml. Conclusion: The new approach was successfully used to determine the concentrations of anandamide and 2-arachidonoyl glycerol in vivo and could be used in the future to measure other endogenous compounds.


Sign in / Sign up

Export Citation Format

Share Document