scholarly journals In vivo monitoring of rat brain endocannabinoids using solid-phase microextraction

Bioanalysis ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 1523-1534 ◽  
Author(s):  
Momna Aslam ◽  
Carlos Feleder ◽  
Ryan J Newsom ◽  
Serge Campeau ◽  
Florin Marcel Musteata

Aim: Solid-phase microextraction is proposed to measure concentrations of anandamide and 2-arachidonoyl glycerol in live rat brains in response to stress. Materials & methods: Solid-phase microextraction fibers were prepared from steel with 1.5 mm extraction coating. 24 male rats were divided into groups based on brain region, stria terminalis or posterior hypothalamus and loud noise or control groups. The fibers were desorbed in acetonitrile-water (75:25) and analyzed by ultraperformance LC–MS/MS. The linear range of the method was 0.05–50 ng/ml and the in vivo concentrations were found to be between 0.3 and 40 ng/ml. Conclusion: The new approach was successfully used to determine the concentrations of anandamide and 2-arachidonoyl glycerol in vivo and could be used in the future to measure other endogenous compounds.

2012 ◽  
Vol 32 ◽  
pp. 31-39 ◽  
Author(s):  
Xu Zhang ◽  
Ken D. Oakes ◽  
Shuang Wang ◽  
Mark R. Servos ◽  
Shufen Cui ◽  
...  

2013 ◽  
Vol 125 (46) ◽  
pp. 12346-12348 ◽  
Author(s):  
Erasmus Cudjoe ◽  
Barbara Bojko ◽  
Inés de Lannoy ◽  
Victor Saldivia ◽  
Janusz Pawliszyn

2010 ◽  
Vol 93 (5) ◽  
pp. 1595-1599 ◽  
Author(s):  
Mohana Krishna Reddy Mudiam ◽  
Mahendra Pratap Singh ◽  
Debapratim Kar Chowdhuri ◽  
Ramesh Chandra Murthy

Abstract A simple, rapid, and solvent-free method for quantitative determination of benzene, toluene, and Xylene in exposed Drosophila larvae was developed using headspace solid-phase microextraction (HS-SPME) coupled to GC/MS. Larvae fed on standard Drosophila food mixed with benzene, toluene, and Xylene for 48 h were homogenized in Milli-Q water. Extraction of benzene, toluene, and Xylene was performed at 65C for 30 min on the SPME fiber (silica-fused). Subsequently, the fiber was desorbed in the GC injection port, followed by GC/MS analysis in the selected-ion monitoring mode. An external calibration curve was used for the quantification of benzene, toluene, and Xylene in the exposed organism. Recoveries were in the range of 78-82% (intraday) and 76-81% (interday) in larvae, and 9196 (intraday) and 87-92% (interday) in the diet. LOD with an S/N of 3:1 and LOQ with an S/N of 10:1 were in the range of 0.010.023 and 0.0340.077 µg/L, respectively. Percent RSD values for benzene, toluene, and Xylene were in the range of 0.500.81 (intraday) and 0.891.23 (interday) for retention time, and 2.163.85 (intraday) and 2.994.95 (interday) for peak concentration, showing good repeatability. This method was sensitive enough to quantitate benzene, toluene, and Xylene in small exposed organisms like Drosophila larvae. The SPME/GC/MS method developed may have wider applications in various in vivo toxicological studies.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2931 ◽  
Author(s):  
Quang Ngoc Dong ◽  
Takahiro Kanno ◽  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Katsumi Hideshima

Uncalcined and unsintered hydroxyapatite/poly l-lactide (u-HA/PLLA) material has osteoconductive characteristics and is available for use as a maxillofacial osteosynthetic reconstruction device. However, its bone regeneration ability in the maxillofacial region has not been fully investigated. This study is the first to assess the bone regenerative potential of osteoconductive u-HA/PLLA material when it is used for repairing maxillofacial bone defects. A total of 21 Sprague-Dawley male rats were divided into three groups—the u-HA/PLLA, PLLA, or sham control groups. A critical size defect of 4 mm was created in the mandible of each rat. Then, the defect was covered with either a u-HA/PLLA or PLLA sheet on the buccal side. The rats in each group were sacrificed at 2, 4, or 8 weeks. The rats’ mandibles were sampled for histological analysis with hematoxylin and eosin staining, histomorphometry, and immunohistochemistry with Runx2 and osteocalcin (OCN) antibody. The amount of newly formed bone in the u-HA/PLLA group was significantly higher than that of the PLLA group. The expression of Runx2 and OCN in the u-HA/PLLA group was also significantly higher. These results demonstrate that the u-HA/PLLA material has excellent bone regenerative ability and confirm its applicability as a reconstructive device in maxillofacial surgery.


Sign in / Sign up

Export Citation Format

Share Document