scholarly journals Lanthanum Diffusion in Fluorapatite at 400 °C, 50 MPa and 4–16 wt %

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 72
Author(s):  
Xiqiang Liu ◽  
Hui Zhang ◽  
Yunlong Liu

Apatite is an important carrier of rare earth elements (REEs) and phosphorite is a potential REEs resource. However, the influence of hydrothermal fluids on the migration and enrichment of REE in apatite remains controversial. The experimental study of the interaction between REE-bearing fluid and apatite is one of the essential ways to understand the chemical behavior of rare earth elements in apatite. In this study, we conducted the fluid–mineral reaction experimental study (at 400 °C, 50 MPa and 4–16 wt %) between high lanthanum (La) content hydrothermal solution and low REE content to reveal the influence of different salinities on the diffusion of rare earth elements in fluorapatite. Based on in situ geochemical analyses of experimental products, we show that the diffusion coefficients of La in fluorapatite are between 3.24 × 10−15 and 5.88 × 10−15 m2/s. The salinity of the fluid has a great influence on the diffusion coefficient, with the increase of salinity, the diffusion coefficient increase.

2011 ◽  
Vol 286 (1-2) ◽  
pp. 32-47 ◽  
Author(s):  
Christopher M. Fisher ◽  
John M. Hanchar ◽  
Scott D. Samson ◽  
Bruno Dhuime ◽  
Janne Blichert-Toft ◽  
...  

Author(s):  
Le Zhang ◽  
Jia-Lin Wu ◽  
Yanqiang Zhang ◽  
Ya-Nan Yang ◽  
Pengli He ◽  
...  

Titanite is a widespread accessory nesosilicate with high trace-element contents including rare-earth elements, Th, and U, and is thus suitable for in situ isotopic and trace-element analyses and U–Pb dating....


2008 ◽  
Vol 73 (4) ◽  
pp. 453-461
Author(s):  
Pavle Premovic ◽  
Maja Stankovic ◽  
Mirjana Pavlovic ◽  
Milos Djordjevic

Geochemical analyses of Zn, Pb and rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in the kerogen of the black marl at the Cretaceous - Paleogene boundary Fish Clay at H?jerup were performed. Substantial proportions of the Zn, Pb and rare earths were probably contained in terrestrial humic substances (the kerogen precursor) arriving at the marine sedimentary site. This is in accord with a previous hypothesis that kerogen is mainly derived from humic acids of an oxic soil in of the adjacent coastal areas of eastern Denmark. It is also suggested that humics enriched in Zn, Pb and rare earth elements were transported mainly through fluvial transport into the deposition site of the Fish Clay. Local weathering/leaching of the impact-eject fallout on the land surface and local terrestrial rocks by impact-induced? acid surface waters perhaps played an important role in providing Zn, Pb and rare earths to these humic substances. Apparently, chondritic and non-chondritic Zn originated from the impact fallout; Pb and rare earth elements were most likely sourced by exposed rocks in the coastal areas of eastern Denmark.


2021 ◽  
pp. 1-14
Author(s):  
Mirosław Słowakiewicz ◽  
Amlan Banerjee ◽  
Sarbani Patranabis-Deb ◽  
Gautam Kumar Deb ◽  
Maurice E. Tucker

Abstract Remnants of some of the planet’s most ancient life forms, stromatolites in the late Mesoproterozoic sea of the Chattisgarh Basin, India, preserve a conspicuous sinuous pattern. They occur as successive biostromes, 10–30 cm thick, separated by 2–5-cm-thick marly layers and discrete bioherms up to several metres thick and 20 m across. Stromatolite columns in the Chandi Formation are 5–10 cm high, sinuous, inclined and straight, with both branched and non-branched types. These stromatolites are composed of calcite micrite and show well defined light and dark laminae with evidence of erosion between lamina sets. The column sinuosity probably originated as a response to changes in direction and strength of currents. Successive flat beds of stromatolite (biostromes), separated by marl/clay horizons, impart a rhythmic pattern to the succession. The Chandi sinuous stromatolite columns resemble those occurring in China, North America and Siberia, of a comparable age, suggesting that similar marine conditions of stromatolite formation might have been operating in the late Mesoproterozoic seas worldwide. However, the petrographic and sedimentological analyses of these stromatolites indicate their development through in situ production of carbonate with some trapping and binding of detrital sediment. As a result of the presence of terrigenous material within the stromatolites, whole-rock geochemical analyses for trace elements and rare earth elements cannot be used for interpretation of seawater chemistry and the redox conditions at the time.


Sign in / Sign up

Export Citation Format

Share Document