scholarly journals Analysis of Floral Fragrance Compounds of Chimonanthus praecox with Different Floral Colors in Yunnan, China

Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 122
Author(s):  
Liubei Meng ◽  
Rui Shi ◽  
Qiong Wang ◽  
Shu Wang

In order to better understand the floral fragrance compounds of Chimonanthus praecox belonging to genus Chimonanthus of Chimonanaceae in Yunnan, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was used to analyze these compounds from four C. praecox plants with different floral colors. Thirty-one types of floral fragrance compounds were identified, among which terpenes, alcohols, esters, phenols, and heterocyclic compounds were the main compounds. Interestingly, the floral fragrance compounds identified in the flowers of C. praecox var. concolor included benzyl acetate, α-ocimene, eugenol, indole, and benzyl alcohol. By contrast, the floral fragrance compounds β-ocimene, α-ocimene, and trans-β-ocimene were detected in C. praecox var. patens. Cluster analysis showed that C. praecox var. concolor H1, H2, and C. praecox var. patens H4 were clustered in one group, but C. praecox var. patens H3 was individually clustered in the other group. Additionally, principal component analysis showed that α-ocimene, benzyl alcohol, benzyl acetate, cinnamyl acetate, eugenol, and indole were the main floral fragrance compounds that could distinguish the four C. praecox with different floral colors in Yunnan. This study provides a theoretical basis for further elucidating the mechanism and pathway of the floral fragrance release of C. praecox.

2020 ◽  
Vol 69 (9-10) ◽  
pp. 515-520
Author(s):  
Igor Jerković ◽  
Marina Kranjac ◽  
Marina Zekić ◽  
Ani Radonić ◽  
Zvonimir Marijanović

Reviewed in brief are the selected results of the application of headspace solid-phase microextraction as a preparative approach for gas chromatography – mass spectrometry (HS-SPME/GC-MS) for natural organic compounds research at the University of Split, Faculty of Chemistry and Technology. A wide variety of headspace compounds from different natural sources has been identified: lower aliphatic compounds (e.g., C5- and C6-compounds), aromatic compounds, monoterpenes (e.g., linalool derivatives (oxides, anhydro-oxides, epoxides), hotrienol), sesquiterpenes (e.g., eudesmol isomers, hydrocarbons), and C9- and C13-norisoprenoids (e.g., 3,4-dihydro-3-oxoedulan, 4-oxoisophorone, trans-β-damascenone). These compounds are important phytochemicals as flavour/fragrance compounds, chemical markers of the botanical origin or others (e.g., allelochemicals, pheromones, or acaricide residue).


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1385 ◽  
Author(s):  
Dong Han ◽  
Si Mi ◽  
Chun-Hui Zhang ◽  
Juan Li ◽  
Huan-Lu Song ◽  
...  

The primary aim of this study was to investigate volatile constituents for the differentiation of Chinese marinated pork hocks from four local brands, Dahongmen (DHM), Daoxiangcun (DXC), Henghuitong (HHT) and Tianfuhao (TFH). To this end the volatile constituents were evaluated by gas chromatography-mass spectrometry/olfactometry (GC-MS/O), electronic nose (E-nose) and chemometrics. A total of 62 volatile compounds were identified and quantified in all pork hocks, and 24 of them were considered as odour-active compounds because their odour activity values (OAVs) were greater than 1. Hexanal (OAV at 3.6–20.3), octanal (OAV at 30.3–47.5), nonanal (OAV at 68.6–166.3), 1,8-cineole (OAV at 36.4–133.3), anethole (OAV at 5.9–28.3) and 2-pentylfuran (OAV at 3.5–29.7) were the key odour-active compounds contributing to the integral flavour of the marinated pork hocks. According to principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) of GC-MS/O and E-nose data, the results showed that the marinated pork hocks were clearly separated into three groups: DHM, HHT, and DXC-TFH. Nine odour-active compounds, heptanal, nonanal, 3-carene, d-limonene, β-phellandrene, p-cymene, eugenol, 2-ethylfuran and 2-pentylfuran, were determined to represent potential flavour markers for the discrimination of marinated pork hocks. This study indicated the feasibility of using GC-MS/O coupled with the E-nose method for the differentiation of the volatile profile in different brands of marinated pork hocks.


2014 ◽  
Vol 10 (4) ◽  
pp. 821-828 ◽  
Author(s):  
Hua-Feng Yang ◽  
Song-Lei Wang ◽  
Shu-Juan Yu ◽  
Xin-An Zeng ◽  
Da Wen Sun

Abstract The volatile composition of six Chinese sugarcane varieties has been analyzed by headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography-mass spectrometry (GC-MS). A total of 40 volatile compounds were identified by the optimized HS-SPME procedure. It was found that the sugarcane juice from Daheixiong variety contained the highest amount of volatile compounds (108.48 mg/L), followed by Tai 22 (90.13 mg/L), 94128 (87.19 mg/L), Gui 00122 (80.16 mg/L), Yue 00236 (79.43 mg/L) and Taiyou (22.54 mg/L). Ethyl alcohol, limonene, hexanol, (s)-2-heptanol and acetic acid were the most abundant compounds present in sugarcane juice. Interestingly, these compounds were also selected by principal component analysis (PCA) to discriminate the sugarcane juices in terms of their varieties. Overall, the identification of aromatic compounds in sugarcane juice could provide useful information for determining sugarcane varieties and be used as a reference for choosing the suitable sugarcane variety as raw material for producing other product, like rums.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kahina Zidi ◽  
Djamel Edine Kati ◽  
Mostapha Bachir-bey ◽  
Manon Genva ◽  
Marie-Laure Fauconnier

Aroma is one of the essential parameters that determine fruit quality. It is also an important feature of varietal characterization and so valuable for agro-biodiversity identification and preservation. In order to characterize changes in the aroma fingerprint through fig development, the main objective of the present research was to study the volatile organic compound (VOC) profiles of figs (Ficus carica L.) from three cultivars, Taamriwthe (TH), Azegzaw (AZ), and Averkane (AV), at three ripening stages (unripe, ripe, and fully ripe). Analyses was performed using Headspace Solid-phase Microextraction and gas chromatography coupled with mass spectrometry. Results revealed the presence of 29 compounds that were grouped into different chemical classes. Aldehydes comprised the most abundant VOCs identified in all the studied figs, while alcohols, ketones, and terpenes comprised the minor compounds found in TH, AZ, and AV figs, respectively. Different aroma descriptors were identified throughout the ripening stages of figs; fruity and green aromas were dominant in all cultivars, while a fatty aroma scarcely occurred in figs. A gallery plot representation demonstrated that certain VOCs differentiate the studied cultivars and the different ripening stages of figs. Principal component analysis findings demonstrated characteristic VOCs of distinct ripening stages and cultivars, those VOCs can be used as fingerprints to distinguish different cultivars and/or ripening stages.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4482
Author(s):  
Shidan Weng ◽  
Xueqing Fu ◽  
Yu Gao ◽  
Tianlei Liu ◽  
Yi Sun ◽  
...  

Freesia hybrida is a group of cultivars in the genus Freesia with a strong floral scent composed of diverse volatile organic compounds (VOCs). In this study, the VOCs of 34 F. hybrida were extracted and analyzed by headspace solid phase microextraction and gas chromatography mass spectrometry (HS-SPME-GC-MS). A total of 164 VOCs whose relative contents were higher than 0.05% were detected. The numbers of VOCs in all germplasms differed between 11 to 38, and the relative contents ranged from 32.39% to 94.28%, in which most germplasms were higher than 80%. Terpenoids, especially monoterpenes, were the crucial type of VOCs in most germplasms, of which linalool and D-limonene were the most frequently occurring. Principal component analysis (PCA) clearly separated samples based on whether linalool was the main component, and hierarchical clustering analysis (HCA) clustered samples into 4 groups according to the preponderant compounds linalool and (E)-β-ocimene. Comparison of parental species and hybrids showed heterosis in three hybrids, and the inherited and novel substances suggested that monoterpene played an important role in F. hybrida floral scent. This study established a foundation for the evaluation of Freesia genetic resources, breeding for the floral aroma and promoting commercial application.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2166
Author(s):  
Drishti Majithia ◽  
Rita Metrani ◽  
Nitin Dhowlaghar ◽  
Kevin M. Crosby ◽  
Bhimanagouda S. Patil

Cucumis melo L is one of the most commercial and economical crops in the world with several health beneficial compounds as such carotenoids, amino acids, vitamin A and C, minerals, and dietary fiber. Evaluation of the volatile organic compounds (VOCs) in different melon (Cucumis melo L.) breeding lines provides useful information for improving fruit flavor, aroma, and antimicrobial levels. In this study, the VOCs in 28 melon breeding lines harvested in 2019 were identified and characterized using head space solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). This identified 113 VOCs with significant differences in composition and contents of among the breeding lines, including 15 esters, 27 aldehydes, 35 alcohols, 14 ketones, 4 acids, 10 hydrocarbons, 5 sulfurs, and 3 other compounds. The highest average contents of all the VOCs were found in BL-30 (13,973.07 µg/kg FW) and the lowest were in BL-22 (3947.13 µg/kg FW). BL-9 had high levels of carotenoid-derived VOCs. The compounds with the highest contents were benzaldehyde, geranylacetone, and β-ionone. Quality parameters such as color and sugar contents of melons were also measured. All the melon color readings were within the typical acceptable range. BL-22 and BL-14 had the highest and lowest sugar contents, respectively. Principal component analysis (PCA) produced diverse clusters of breeding lines based on flavor and aroma. BL-4, BL-7, BL-12, BL-20, and BL-30 were thus selected as important breeding lines based on their organoleptic, antimicrobial, and health-beneficial properties.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 145 ◽  
Author(s):  
Tengxun Zhang ◽  
Fei Bao ◽  
Yongjuan Yang ◽  
Ling Hu ◽  
Anqi Ding ◽  
...  

Prunus mume is the only fragrant flowering species of Prunus. According to the previous studies, benzyl acetate and eugenol dominate its floral scent. However, the diversity of its floral scents remains to be elucidated. In this work, the floral volatiles emitted from eight intraspecific cultivars of P. mume with white, pink and red flowers, were collected and analyzed using headspace solid-phase microextraction combined with gas chromatograms-mass spectrometry (HS-SPME-GC-MS). In total, 31 volatile compounds were identified, in which phenylpropanoids/benzenoids accounted for over 95% of the total emission amounts. Surprisingly, except for benzyl acetate and eugenol, several novel components, such as benzyl alcohol, cinnamyl acohol, cinnamy acetate, and benzyl benzoate were found in some cultivars. The composition of floral volatiles in cultivars with white flowers was similar, in which benzyl acetate was dominant, while within pink flowers, there were differences of floral volatile compositions. Principal component analysis (PCA) showed that the emissions of benzyl alcohol, cinnamyl alcohol, benzyl acetate, eugenol, cinnamyl acetate, and benzyl benzoate could make these intraspecific cultivars distinguishable from each other. Further, hierarchical cluster analysis indicated that cultivars with similar a category and amount of floral compounds were grouped together. Our findings lay a theoretical basis for fragrant plant breeding in P. mume.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Qiuyue Geng ◽  
Ping Zhan ◽  
Honglei Tian ◽  
Peng Wang ◽  
Haitao Chen

A single-factor gradual optimization method was developed in this experiment in order to improve the headspace solid-phase microextraction (HS-SPME) effect of volatile compounds in pepper chicken soup. The different extraction conditions included fibers with different coating materials, sample volume, extraction temperature, and extraction time. The total peak areas and the numbers of valid peaks were compared and analyzed as the indicators of condition optimization. Gas chromatography-mass spectrometry (GC-MS) results showed that the four factors all have significant impact on the extraction effect of volatiles in pepper chicken soup. Using the principal component analysis (PCA), the optimal conditions of HS-SPME were inferred below: an extraction fiber of 50/30μm DVB/CAR/PDMS, a sample volume of 7 g, an extraction temperature of 65°C, and an extraction time of 30 min. Compared to the original extraction conditions, the optimized conditions were especially advantageous for the comprehensive analysis of volatiles, which could be potentially used in further study of soup.


Sign in / Sign up

Export Citation Format

Share Document