scholarly journals Detection and Characterization of Physical Activity and Psychological Stress from Wristband Data

Signals ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 188-208
Author(s):  
Mert Sevil ◽  
Mudassir Rashid ◽  
Mohammad Reza Askari ◽  
Zacharie Maloney ◽  
Iman Hajizadeh ◽  
...  

Wearable devices continuously measure multiple physiological variables to inform users of health and behavior indicators. The computed health indicators must rely on informative signals obtained by processing the raw physiological variables with powerful noise- and artifacts-filtering algorithms. In this study, we aimed to elucidate the effects of signal processing techniques on the accuracy of detecting and discriminating physical activity (PA) and acute psychological stress (APS) using physiological measurements (blood volume pulse, heart rate, skin temperature, galvanic skin response, and accelerometer) collected from a wristband. Data from 207 experiments involving 24 subjects were used to develop signal processing, feature extraction, and machine learning (ML) algorithms that can detect and discriminate PA and APS when they occur individually or concurrently, classify different types of PA and APS, and estimate energy expenditure (EE). Training data were used to generate feature variables from the physiological variables and develop ML models (naïve Bayes, decision tree, k-nearest neighbor, linear discriminant, ensemble learning, and support vector machine). Results from an independent labeled testing data set demonstrate that PA was detected and classified with an accuracy of 99.3%, and APS was detected and classified with an accuracy of 92.7%, whereas the simultaneous occurrences of both PA and APS were detected and classified with an accuracy of 89.9% (relative to actual class labels), and EE was estimated with a low mean absolute error of 0.02 metabolic equivalent of task (MET).The data filtering and adaptive noise cancellation techniques used to mitigate the effects of noise and artifacts on the classification results increased the detection and discrimination accuracy by 0.7% and 3.0% for PA and APS, respectively, and by 18% for EE estimation. The results demonstrate the physiological measurements from wristband devices are susceptible to noise and artifacts, and elucidate the effects of signal processing and feature extraction on the accuracy of detection, classification, and estimation of PA and APS.

2021 ◽  
Vol 87 (6) ◽  
pp. 445-455
Author(s):  
Yi Ma ◽  
Zezhong Zheng ◽  
Yutang Ma ◽  
Mingcang Zhu ◽  
Ran Huang ◽  
...  

Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We pres- ent in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature varia- tion algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


Electroencephalographic (EEG) signals are the preferred input for non-invasive Brain-Computer Interface (BCI). Efficient signal processing strategies, including feature extraction and classification, are required to distinguish the underlying task of BCI. This work proposes the optimized common spatial pattern(CSP) filtering technique as the feature extraction method for collecting the spatially spread variation of the signal. The bandpass filter (BPF) designed for this work assures the availability of event-related synchronized (ERS) and event-related desynchronized (ERD) signal as input to the spatial filter. This work takes consideration of the area-specific electrodes for feature formation. This work further proposes a comparative analysis of classifier algorithms for classification accuracy(CA), sensitivity and specificity and the considered algorithms are Support Vector Machine(SVM), Linear Discriminant Analysis(LDA), and K-Nearest Neighbor(KNN). Performance parameters considered are CA, sensitivity, and selectivity, which can judge the method not only for high CA but also inclining towards the particular class. Thus it will direct in the selection of appropriate classifier as well as tuning the classifier to get the balanced results. In this work, CA, the prior performance parameter is obtained to be 88.2% sensitivity of 94.2% and selectivity 82.2% for the cosine KNN classifier. SVM with linear kernel function also gives the comparable results, thus concluding that the robust classifiers perform well for all parameters in case of CSP for feature extraction.


2021 ◽  
Vol 10 (2) ◽  
pp. 233-245
Author(s):  
Tanja Dorst ◽  
Yannick Robin ◽  
Sascha Eichstädt ◽  
Andreas Schütze ◽  
Tizian Schneider

Abstract. Process sensor data allow for not only the control of industrial processes but also an assessment of plant conditions to detect fault conditions and wear by using sensor fusion and machine learning (ML). A fundamental problem is the data quality, which is limited, inter alia, by time synchronization problems. To examine the influence of time synchronization within a distributed sensor system on the prediction performance, a test bed for end-of-line tests, lifetime prediction, and condition monitoring of electromechanical cylinders is considered. The test bed drives the cylinder in a periodic cycle at maximum load, a 1 s period at constant drive speed is used to predict the remaining useful lifetime (RUL). The various sensors for vibration, force, etc. integrated into the test bed are sampled at rates between 10 kHz and 1 MHz. The sensor data are used to train a classification ML model to predict the RUL with a resolution of 1 % based on feature extraction, feature selection, and linear discriminant analysis (LDA) projection. In this contribution, artificial time shifts of up to 50 ms between individual sensors' cycles are introduced, and their influence on the performance of the RUL prediction is investigated. While the ML model achieves good results if no time shifts are introduced, we observed that applying the model trained with unmodified data only to data sets with time shifts results in very poor performance of the RUL prediction even for small time shifts of 0.1 ms. To achieve an acceptable performance also for time-shifted data and thus achieve a more robust model for application, different approaches were investigated. One approach is based on a modified feature extraction approach excluding the phase values after Fourier transformation; a second is based on extending the training data set by including artificially time-shifted data. This latter approach is thus similar to data augmentation used to improve training of neural networks.


Kybernetes ◽  
2019 ◽  
Vol 49 (10) ◽  
pp. 2547-2567 ◽  
Author(s):  
Himanshu Sharma ◽  
Anu G. Aggarwal

Purpose The experiential nature of travel and tourism services has popularized the importance of electronic word-of-mouth (EWOM) among potential customers. EWOM has a significant influence on hotel booking intention of customers as they tend to trust EWOM more than the messages spread by marketers. Amid abundant reviews available online, it becomes difficult for travelers to identify the most significant ones. This questions the credibility of reviewers as various online businesses allow reviewers to post their feedback using nickname or email address rather than using real name, photo or other personal information. Therefore, this study aims to determine the factors leading to reviewer credibility. Design/methodology/approach The paper proposes an econometric model to determine the variables that affect the reviewer’s credibility in the hospitality and tourism sector. The proposed model uses quantifiable variables of reviewers and reviews to estimate reviewer credibility, defined in terms of proportion of number of helpful votes received by a reviewer to the number of total reviews written by him. This covers both aspects of source credibility i.e. trustworthiness and expertness. The authors have used the data set of TripAdvisor.com to validate the models. Findings Regression analysis significantly validated the econometric models proposed here. To check the predictive efficiency of the models, predictive modeling using five commonly used classifiers such as random forest (RF), linear discriminant analysis, k-nearest neighbor, decision tree and support vector machine is performed. RF gave the best accuracy for the overall model. Practical implications The findings of this research paper suggest various implications for hoteliers and managers to help retain credible reviewers in the online travel community. This will help them to achieve long term relationships with the clients and increase their trust in the brand. Originality/value To the best of authors’ knowledge, this study performs an econometric modeling approach to find determinants of reviewer credibility, not conducted in previous studies. Moreover, the study contracts from earlier works by considering it to be an endogenous variable, rather than an exogenous one.


Author(s):  
Clyde Coelho ◽  
Aditi Chattopadhyay

This paper proposes a computationally efficient methodology for classifying damage in structural hotspots. Data collected from a sensor instrumented lug joint subjected to fatigue loading was preprocessed using a linear discriminant analysis (LDA) to extract features that are relevant for classification and reduce the dimensionality of the data. The data is then reduced in the feature space by analyzing the structure of the mapped clusters and removing the data points that do not affect the construction of interclass separating hyperplanes. The reduced data set is used to train a support vector machines (SVM) based classifier and the results of the classification problem are compared to those when the entire data set is used for training. To further improve the efficiency of the classification scheme, the SVM classifiers are arranged in a binary tree format to reduce the number of comparisons that are necessary. The experimental results show that the data reduction does not reduce the ability of the classifier to distinguish between classes while providing a nearly fourfold decrease in the amount of training data processed.


Author(s):  
H. Elmannai ◽  
M. A. Loghmari ◽  
M. S. Naceur

Major goal of multispectral data analysis is land cover classification and related applications. The dimension drawback leads to a small ratio of the remote sensing training data compared to the number of features. Therefore robust methods should be associated to overcome the dimensionality curse. The presented work proposed a pattern recognition approach. Source separation, feature extraction and decisional fusion are the main stages to establish an automatic pattern recognizer. <br><br> The first stage is pre-processing and is based on non linear source separation. The mixing process is considered non linear with gaussians distributions. The second stage performs feature extraction for Gabor, Wavelet and Curvelet transform. Feature information presentation provides an efficient information description for machine vision projects. <br><br> The third stage is a decisional fusion performed in two steps. The first step assign the best feature to each source/pattern using the accuracy matrix obtained from the learning data set. The second step is a source majority vote. Classification is performed by Support Vector Machine. Experimentation results show that the proposed fusion method enhances the classification accuracy and provide powerful tool for pattern recognition.


Author(s):  
ALI SELAMAT ◽  
IMAM MUCH IBNU SUBROTO ◽  
CHOON-CHING NG

In this paper, we proposed hybrid-KNN methods on the Arabic script web page language identification. One of the crucial tasks in the text-based language identification that utilizes the same script is how to produce reliable features and how to deal with the huge number of languages in the world. Specifically, it has involved the issue of feature representation, feature selection, identification performance, retrieval performance, and noise tolerance performance. Therefore, there are a number of methods that have been evaluated in this work; k-nearest neighbor (KNN), support vector machine (SVM), backpropagation neural networks (BPNN), hybrid KNN-SVM, and KNN-BPNN, in order to justify the capability of the state-of-the-art methods. KNN is prominent in data clustering or data filtering, SVM and BPNN are well known in supervised classification, and we have proposed hybrid-KNN for noise removal on web page language identification. We have used the standard measurements which are accuracy, precision, recall and F1 measurements to evaluate the effectiveness of the proposed hybrid-KNN. From the experiment, we have observed that BPNN is able to produce precise identification if the data set given is clean. However, when increasing the level of noise in the training data, KNN-SVM performs better than KNN-BPNN against the misclassification data, even on the level of 50% noise. Therefore, it is proven that KNN-SVM produce promising identification performance, in which KNN is able to reduce the noise in the data set and SVM is reliable in the language identification.


2021 ◽  
Vol 12 (2) ◽  
pp. 67-77
Author(s):  
Umme Farhana ◽  
Mst Jannatul Ferdous

In brain computer interface (BCI) systems, the electroencephalography (EEG) signals give a pathway to a motor disabled person to communicate outside using the brain signal and a computer. EEG signals of different motor imagery (MI) movements can be differentiated using an effective classification technique to aid a motor disabled patient. The purpose of this paper is to classify two different types of MI movement tasks, movement of the left hand and movement of the right foot EEG signals accurately. For this purpose we have used a publicly available dataset. Since the feature extraction for classification is an important task, so we have used popular common spatial pattern (CSP) method for spatial feature extraction. Two different machine learning classifiers named support vector machine (SVM) and K-nearest neighbor (KNN) have been used to verify the proposed method. We got the highest average results 95.55%, 98.73% and 92.38% in case of SVM and 93.5%, 98.73% and 90.15% in case of KNN for classification accuracy, sensitivity, and specificity, respectively when a Butterworth band-pass filter passed through [10–30] Hz. On the other hand accuracy came to 89.4% in [10-30] Hz when applying CSP for feature extraction and fisher linear discriminant analysis (FLDA) for classification on this dataset earlier. Journal of Engineering Science 12(2), 2021, 67-77


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


Sign in / Sign up

Export Citation Format

Share Document