scholarly journals Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface

Soil Systems ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 60
Author(s):  
Ranju Karna ◽  
Ganga Hettiarachchi ◽  
Joy Van Nostrand ◽  
Tong Yuan ◽  
Charles Rice ◽  
...  

Milling and mining metal ores are major sources of toxic metals contamination. The Spring River and its tributaries in southeast Kansas are contaminated with Pb, Zn, and Cd because of 120 years of mining activities. Trace metal transformations and cycling in mine waste materials greatly influence their mobility and toxicity and they affect both plant productivity and human health. It has been hypothesized that under reduced conditions in sulfate-rich environments, these metals can be transformed into their sulfide forms, thus limiting mobility and toxicity. We studied biogeochemical transformations of Pb, Zn, and Cd in flooded subsurface mine waste materials, natural or treated with organic carbon (OC), and/or sulfur (S), by combining advanced microbiological and X-ray spectroscopic techniques to determine the effects of treatments on the microbial community structure and identify the dominant functional genes that are involved in the biogeochemical transformations, especially metal sulfide formation over time. Samples collected from medium-, and long-term submerged columns were used for microarray analysis via functional gene array (GeoChip 4.2). The total number of detected gene abundance decreased under long-term submergence, but major functional genes abundance was enhanced with OC-plus-S treatment. The microbial community exhibited a substantial change in structure in response to OC and S addition. Sulfate-reducing bacteria genes dsrA/B were identified as key players in metal sulfide formation via dissimilatory sulfate reduction. Uniqueness of this study is that microbial analyses presented here in detail are in agreement with molecular-scale synchrotron-based X-ray data, supporting that OC-plus-S treatment would be a promising strategy for reducing metal toxicity in mine waste materials in the subsurface environment.

Author(s):  
Ranju R. Karna ◽  
Ganga M. Hettiarachchi ◽  
Joy D. Van Nostrand ◽  
Tong Yuan ◽  
Charles W. Rice ◽  
...  

Milling and mining metal ores are major sources of heavy metal contamination. The Spring River and its tributaries in southeast Kansas are contaminated with Pb, Zn, and Cd as a result of 120 years of mining activities. Trace metal transformations and cycling in mine waste materials greatly influence their mobility and toxicity and affect plant productivity and human health. It has been hypothesized that under reduced conditions in sulfate-rich environments, these metals can be transformed into their sulfide forms, thus limiting mobility and toxicity. We studied biogeochemical transformations of Pb, Zn and Cd in flooded subsurface mine waste materials, natural or treated with organic carbon (OC) and/or sulfur (S), by combining advanced microbiological and X-ray spectroscopic techniques to determine the effects of treatments on the microbial community structure and identify the dominant functional genes involved in the biogeochemical transformations, especially metal sulfide formation over time. Samples collected from medium-, and long-term submerged columns were used for microarray analysis via functional gene array (GeoChip 4.2). The total number of detected gene abundance decreased under long-term submergence, but major functional genes abundance was enhanced with OC plus S treatment. The microbial community exhibited a substantial change in structure in response to OC and S addition. Sulfur-reducing bacteria genes dsrA/B were identified as key players in metal sulfide formation via dissimilatory sulfate reduction. Uniqueness of this study is that microbial analyses presented here in details are in agreements with molecular-scale synchrotron-based X-ray data supporting that OC-plus-S treatment would be a promising strategy for reducing metal toxicity in mine waste materials.


2002 ◽  
Vol 17 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Vivek P. Utgikar ◽  
Stephen M. Harmon ◽  
Navendu Chaudhary ◽  
Henry H. Tabak ◽  
Rakesh Govind ◽  
...  

2003 ◽  
Vol 38 (3) ◽  
pp. 483-497 ◽  
Author(s):  
Susan A. Baldwin ◽  
Al Henry Hodaly

Abstract Sediment from a wetland receiving runoff from a coal mine waste dump in the Elk River Valley of southeast British Columbia was assessed for potential selenium uptake. Selenite [SeO32-, Se(IV)] was found to adsorb to the washed sediment at pH 7 to 8, whereas no selenate [SeO42-, Se(VI)] was adsorbed, in the concentration range of 8 to 225 μg L-1 Se as selenite or selenate. Sulfate- and selenate-reducing bacterial activity was detected in the sediment. In the presence of sulfate-reducing bacteria growth medium, Se as selenate was reduced from 619(±53) μg L-1 to 15(±0.7) μg L-1, and in the presence of selenate-reducing bacteria growth medium, Se as selenate was reduced from 364(±66) mg L-1 to 22(±10) mg L-1. Semi-continuous microcosms containing sediment overlaid with selenate (500 μg L-1 Se) and sulfate (0.9 g L-1) containing water were amended with plant debris from the site or nutrients (lactate and fertilizer). Potential selenate reduction rate (0.76 h-1) was highest in the unamended microcosms. Amendment with plant debris from the site had a negative effect on selenate reduction rate in the short term (after one hour) and a positive effect on Se removal in the long term (after one week). This study suggests that wetland sediments at the mine site may be important sinks for Se.


Coatings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Xingwei Zheng ◽  
Xin Zhuang ◽  
Yanhua Lei ◽  
Zhenhua Chu ◽  
Jingxiang Xu ◽  
...  

The corrosion behavior of the Ti–6Al–4V alloy was investigated in a sulfate-reducing bacteria (SRB) solution. The results showed that sulfate-reducing bacteria has good affinity with the surface of the Ti–6Al–4V alloy after 5 days. A potentiodynamic polarization test demonstrated that the corrosion resistance of the Ti–6Al–4V alloy was initially improved but deteriorated quickly in the subsequent period. The corrosion mechanism of the Ti–6Al–4V alloy was revealed by analyzing its microstructure with the aid of scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray fluorescence. The pitting corrosion was deemed to be a typical cause of the corrosion behavior of the alloy in the SRB solution. The underlying mechanism of the pitting corrosion was proposed for the alloy.


2011 ◽  
Vol 347-353 ◽  
pp. 931-936
Author(s):  
Mo Jie Sun ◽  
Hong Dan Shi ◽  
Sheng Zheng

Microorganisms in circulating water of power plant bring great harm to cooling water system. It not only affects the effect of heat transfer, but also would lead to corrosion of heat exchanger, in seriously would result in shutdown. Now the plant uses the bactericide to treat with the microbial fouling generally, and a variety of fungicides have been developed. However, the long-term usage of fungicide will make the bacteria appear resistance, which greatly limits the application of such measures. This paper overviewed different resistance mechanisms of Pseudomonas, sulfate-reducing bacteria, iron bacteria and slime forming bacteria in the microbial fouling to bactericide and put forward some solutions.


2017 ◽  
Vol 35 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Jennifer B. Glass ◽  
Si Chen ◽  
Katherine S. Dawson ◽  
Damian R. Horton ◽  
Stefan Vogt ◽  
...  

1990 ◽  
Vol 36 (6) ◽  
pp. 400-408 ◽  
Author(s):  
Judy D. Wall ◽  
Barbara J. Rapp-Giles ◽  
Merton F. Brown ◽  
Jerry A. White

Oxygen tolerance of the strictly anaerobic sulfate-reducing bacteria is well documented and poorly understood. This capacity for surviving brief exposures to oxygen must be a major factor in the diversity of environmental niches observed for these bacteria. We observed that viable cells of Desulfovibrio desulfuricans (ATCC 27774) could be found in colonies on the surface of solidified medium exposed to air for periods as long as 1 month. During exposure to air, the originally black colonies became greyish white, presumably as a result of the air oxidation of the metal sulfide deposits. A black, brittle deposit formed at the bottom of the colony and, simultaneously, the colony descended into a dimple that developed into a well in the agar. Eventually the colony reached the bottom of the Petri dish. These changes did not take place when the colonies were maintained in an anaerobic chamber. The morphological changes took place with all strains tested: three strains of D. desulfuricans and one strain of Desulfovibrio gigas and Desulfovibrio multispirans. Continued sulfate reduction appeared to be essential. Cyclic sulfate (thiosulfate or sulfite) reduction to sulfide and reoxidation of sulfide by the oxygen in air are proposed to maintain the viability of the bacteria by providing substrates for energy production and by reducing oxygen tension. Scanning and transmission electron microscopy of colony and cellular changes are shown. Key words: Desulfovibrio, sulfate-reducing bacteria, oxygen tolerance, sulfate cycling, scanning electron microscopy.


2010 ◽  
Author(s):  
Raijeli L. Taga ◽  
Jiajia Zheng ◽  
Trang Huynh ◽  
Jack Ng ◽  
Hugh H. Harris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document