scholarly journals Rating Potential Land Use Taking Ecosystem Service into Account—How to Manage Trade-Offs

Standards ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 79-89
Author(s):  
Lars Carlsen

Rating the potential land use for crop production and/or ranching is typically a process where production gains counterbalance environmental losses. Whereas the production gains are often easy to verify, the environmental losses may render visibility through the changes in the ecosystem service, such as water and habitat quality, carbon storage, etc., thus, leaving the decision maker with a multi-criteria problem. The present study demonstrates how partial-order methodology constitutes an advantageous tool for rating/ranking land use that takes trade-offs into account. It is demonstrated that not only the optimal choice of area, on an average basis, e.g., for crop production, is disclosed, but also the relative importance of the included indicators (production gains, ecosystem losses). A short introduction is given, applying data from a recent Chinese study looking for the optimal monoculture as a function of ecosystem tradeoffs. A more elaborate system applying data from the esgame was used, disclosing the most beneficial area for crop production and for ranching, as well as the relative indicators’ importance. The study further demonstrates that a single composite indicator obtained by simple aggregation of indicator values as a ranking tool may lead to a result where gains are optimized; however, this comes at the expense of the environment.

2020 ◽  
Vol 12 (18) ◽  
pp. 7786 ◽  
Author(s):  
Paul Eguiguren ◽  
Tatiana Ojeda Luna ◽  
Bolier Torres ◽  
Melvin Lippe ◽  
Sven Günter

The balance between the supply of multiple ecosystem services (ES) and the fulfillment of society demands is a challenge, especially in the tropics where different land use transition phases emerge. These phases are characterized by either a decline (from intact old-growth to logged forests) or a recovery of ES (successional forests, plantations, and agroforestry systems). This highlights the importance of ecosystem service multifunctionality (M) assessments across these land use transition phases as a basis for forest management and conservation. We analyzed synergies and trade-offs of ES to identify potential umbrella ES. We also evaluated the impact of logging activities in the decline of ES and M, and the influence of three recovery phases in the supply of ES and M. We installed 156 inventory plots (1600 m2) in the Ecuadorian Central Amazon and the Chocó. We estimated indicators for provisioning, regulating, supporting services and biodiversity. M indicator was estimated using the multifunctional average approach. Our results show that above-ground carbon stocks can be considered as an umbrella service as it presented high synergetic relations with M and various ES. We observed that logging activities caused a decline of 16–18% on M, with high impacts for timber volume and above-ground carbon stocks, calling for more sustainable practices with stricter post-harvesting control to avoid a higher depletion of ES and M. From the recovery phases it is evident that, successional forests offer the highest level of M, evidencing high potential to recover multiple ES after human disturbance.


2017 ◽  
Vol 14 (21) ◽  
pp. 4829-4850 ◽  
Author(s):  
Andreas Krause ◽  
Thomas A. M. Pugh ◽  
Anita D. Bayer ◽  
Jonathan C. Doelman ◽  
Florian Humpenöder ◽  
...  

Abstract. Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.


2018 ◽  
Vol 32 (5) ◽  
pp. 1074-1084 ◽  
Author(s):  
Vinícius Marcilio-Silva ◽  
Márcia C. M. Marques ◽  
Jeannine Cavender-Bares

2021 ◽  
Vol 12 (1) ◽  
pp. 327-351
Author(s):  
Anita D. Bayer ◽  
Richard Fuchs ◽  
Reinhard Mey ◽  
Andreas Krause ◽  
Peter H. Verburg ◽  
...  

Abstract. Land-use models and integrated assessment models provide scenarios of land-use and land-cover (LULC) changes following pathways or storylines related to different socioeconomic and environmental developments. The large diversity of available scenario projections leads to a recognizable variability in impacts on land ecosystems and the levels of services provided. We evaluated 16 projections of future LULC until 2040 that reflected different assumptions regarding socioeconomic demands and modeling protocols. By using these LULC projections in a state-of-the-art dynamic global vegetation model, we simulated their effect on selected ecosystem service indicators related to ecosystem productivity and carbon sequestration potential, agricultural production and the water cycle. We found that although a common trend for agricultural expansion exists across the scenarios, where and how particular LULC changes are realized differs widely across models and scenarios. They are linked to model-specific considerations of some demands over others and their respective translation into LULC changes and also reflect the simplified or missing representation of processes related to land dynamics or other influencing factors (e.g., trade, climate change). As a result, some scenarios show questionable and possibly unrealistic features in their LULC allocations, including highly regionalized LULC changes with rates of conversion that are contrary to or exceed rates observed in the past. Across the diverging LULC projections, we identified positive global trends of net primary productivity (+10.2 % ± 1.4 %), vegetation carbon (+9.2 % ± 4.1 %), crop production (+31.2 % ± 12.2 %) and water runoff (+9.3 % ± 1.7 %), and a negative trend of soil and litter carbon stocks (−0.5 % ± 0.4 %). The variability in ecosystem service indicators across scenarios was especially high for vegetation carbon stocks and crop production. Regionally, variability was highest in tropical forest regions, especially at current forest boundaries, because of intense and strongly diverging LULC change projections in combination with high vegetation productivity dampening or amplifying the effects of climatic change. Our results emphasize that information on future changes in ecosystem functioning and the related ecosystem service indicators should be seen in light of the variability originating from diverging projections of LULC. This is necessary to allow for adequate policy support towards sustainable transformations.


2020 ◽  
Vol 12 (5) ◽  
pp. 2112 ◽  
Author(s):  
Muhammad Ziaul Hoque ◽  
Shenghui Cui ◽  
Imranul Islam ◽  
Lilai Xu ◽  
Jianxiong Tang

Assessing the effects of different land use scenarios on subsequent changes in ecosystem service has great implications for sustainable land management. Here, we designed four land use/land cover (LULC) scenarios, such as business-as-usual development (BAUD), economic development priority (EDP), ecological protection priority (EPP), and afforestation development priority (ADP), through a Cellular Automata-Markov (CA-Markov) model, and their effects on ecosystem service values (ESVs) were predicted, using historical LULC maps and ESV coefficients of the Lower Meghna River Estuary, Bangladesh. Findings revealed that agricultural and mangrove forest lands experienced the greatest decreases, while rural and urban settlement land had the greatest increases, leading to a total ESV decrease of US$105.34 million during 1988-2018. The scenario analysis indicated that ESV in 2038 would also decrease by US$41.37 million and US$16.38 million under the BAUD and EDP scenarios, respectively, while ESV will increase by US$60.61 million and US$130.95 million under the EPP and ADP scenarios, respectively. However, all the future land use scenarios will lead to 1.65%, 10.21%, 7.58%, and 6.75% gaps in total food requirements, respectively. Hence, from the perspective of maximizing ESVs and minimizing the trade-offs in food gaps, the ADP scenario could be the optimal land management policy for the studied landscape.


2020 ◽  
Vol 45 ◽  
pp. 101181
Author(s):  
Z. Carter Berry ◽  
Kelly W. Jones ◽  
Leon Rodrigo Gomez Aguilar ◽  
Russell G. Congalton ◽  
Friso Holwerda ◽  
...  

2011 ◽  
Vol 45 (13) ◽  
pp. 5761-5768 ◽  
Author(s):  
Stephan Pfister ◽  
Peter Bayer ◽  
Annette Koehler ◽  
Stefanie Hellweg

2021 ◽  
Vol 13 (22) ◽  
pp. 12463
Author(s):  
Xiaohui Wang ◽  
Yao Wu ◽  
Kiril Manevski ◽  
Manqi Fu ◽  
Xiaogang Yin ◽  
...  

It is essential for the sustainable development of farmland landscapes to balance ecosystem service trade-offs and improve resource use efficiency during crop production. Thus, an integrative and concept-centric qualitative approach was applied by combining the patch–corridor–matrix model of landscape ecology and the crop layout theory of farming systems into a theoretical framework. The thesis concludes that a farmland landscape comprises three compositions: the crop (the main crop and the service crop), the non-crop, and the non-vegetation, leading to heterogeneous composition and configuration. The main crop, typically displayed as large patches with a high distribution ratio, provides most of the provisioning services, while the service crop performs many regulation services. The non-crop and non-vegetation compositions often appear as strips that can connect different patches as corridors and support the provisioning services of crops. Non-crop compositions mainly focus on support and regulation services, while non-vegetation compositions support farming operations. Further research is needed in several respects, including the ecological impact and ecosystem service trade-offs of the composition and configuration heterogeneity, and strategies for the adoption of cropping systems and agronomic measures at the landscape scale, which are essential to the evaluation, improvement, and redesign of farmland landscapes.


Sign in / Sign up

Export Citation Format

Share Document