scholarly journals Development of a New Clean Development Mechanism Methodology for the Quantification of Greenhouse Gas in Calcium Sulfoaluminate Cement

2019 ◽  
Vol 11 (5) ◽  
pp. 1482 ◽  
Author(s):  
Eun-don Jeon ◽  
Kyu-uk Lee ◽  
Chung-kook Lee

The purpose of this research was to probe beyond the scope of the “National Strategy Project on Carbon Mineralization” to develop a “United Nations Framework Convention on Climate Change, Clean Development Mechanism” (UNFCCC CDM) methodology that enables reduction of greenhouse gas (GHG) by “green cement” under the calcium sulfoaluminate (CSA) cement technologies. The findings will be utilized as the foundations and developed into the UNFCCC CDM project. There were two existing methodologies related to cement, but neither was applicable for CSA cement. The existing methodologies are applicable only when there is one clinker, but CSA cement utilizes more than one clinker. Through this research, we developed methodologies to use waste-based material for avoiding emission leakage and utilized more than one clinker to calculate GHG emissions and reduction. For this purpose, we utilized the CSA cement methodology for calculating GHG reduction compared to Portland cement and found that CSA cement allowed for a reduction of 0.281 tCO2-eq/ton above the reduction enabled by Portland cement. We are presently preparing to register the CSA cement methodology for UNFCCC CDM methodology approval. With the technology transfer and support for this CSA cement technology and methodology, developing countries will be able to achieve their national GHG reduction targets and gain carbon credits. Thus, CSA cement technology could serve as an important tool to deal with GHG emissions and climate change.

Author(s):  
Francis Ferraro

The potential for global climate change due to the release of greenhouse gas (GHG) emissions is being debated both nationally and internationally. While many options for reducing GHG emissions are being evaluated, MSW management presents potential options for reductions and has links to other sectors (e.g., energy, industrial processes, forestry, transportation) with further GHG reduction opportunities.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5514
Author(s):  
Seo-Hoon Kim ◽  
SungJin Lee ◽  
Seol-Yee Han ◽  
Jong-Hun Kim

A new government report on climate change shows that global emissions of greenhouse gases have increased to very high levels despite various policies to reduce climate change. Building energy accounts for 40% of the world’s energy consumption and accounts for 33% of the world’s greenhouse gas emissions. This study applied the LEAP (Long-range energy alternatives planning) model and Bass diffusion method for predicting the total energy consumption and GHG (Greenhouse Gas) emissions from the residential and commercial building sector of Sejong City in South Korea. Then, using the Bass diffusion model, three scenarios were analyzed (REST: Renewable energy supply target, BES: Building energy saving, BEP: Building energy policy) for GHG reduction. The GHG emissions for Sejong City for 2015–2030 were analyzed, and the past and future GHG emissions of the city were predicted in a Business-as-Usual (BAU) scenario. In the REST scenario, the GHG emissions would attain a 24.5% reduction and, in the BES scenario, the GHG emissions would attain 12.81% reduction by 2030. Finally, the BEP scenario shows the potential for a 19.81% GHG reduction. These results could be used to guide the planning and development of the new city.


2021 ◽  
Author(s):  
Evelina Skrastina ◽  
◽  
Inga Straupe ◽  
Andis Lazdins ◽  
◽  
...  

On a global scale, ambitious climate change mitigation targets are set. By 2050, the European Union is expected to be climate neutral which means that the greenhouse gas (GHG) emissions will not exceed removals. This initiative is also supported by Latvia. For businesses and carbon intensive industries transition to climate neutral economy will be provided by Just Transition Fund. The direction of the peat sector towards climate neutrality will promote research and innovation as well as restoration of peat extraction sites. These are also the objectives of implementing the Just Transition Fund for investments in Latvia. Studies on management of peat soils to improve the calculation of greenhouse gas (GHG) emissions have been carried out in Latvia within LIFE REstore project. The aim of the study is to assess the impact of afforestation of abandoned peat extraction sites with Scots pine (Pinus sylvestris L.) on GHG emissions compared to retaining of the existing situation (abandoned peatlands with poorly developed vegetation). Afforestation of degraded peatlands can contribute to significant GHG reduction in wetlands – up to 20% of the net GHG emissions due to wetlands management. The most of the GHG mitigation potential is ensured by accumulation of CO2 in living biomass.


2001 ◽  
Vol 03 (01) ◽  
pp. 1-33 ◽  
Author(s):  
KATHERINE BEGG ◽  
GARY HAQ ◽  
MICHAEL CHADWICK ◽  
TIIT KALLASTE

The 1992 Climate Change Convention aims to stabilise greenhouse gas (GHG) emissions. Joint Implementation (JI) and the Clean Development Mechanism (CDM) are instruments which allow countries with high marginal costs of abatement to participate in emission reduction projects in countries with lower marginal abatement costs with the incentive of gaining carbon credits for the reduction of GHGs. The environmental benefits sought by the Convention relate mainly to he mitigation of climate change. However, consideration should also be given to other potential environmental, economic and social effects of JI/CDM projects on the local population and host country. This paper discusses the need for integrating environmental and social considerations into the JI/CDM process. It undertakes a preliminary retrospective environmental assessment of AIJ energy projects in the Czech Republic and Estonia. It also proposes support for capacity building and data collection systems in host countries, application of a simple participative scoping exercise for all projects followed by further work as necessary, upgrading of the Uniform Reporting Format for projects, and incorporation into project approval criteria.


2008 ◽  
Vol 57 (11) ◽  
pp. 1683-1692 ◽  
Author(s):  
Andrea Tilche ◽  
Michele Galatola

Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was “born” as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading “value” could support the investment needs. However, those results were obtained through a “qualitative” assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.


2005 ◽  
Vol 31 ◽  
pp. 279-309 ◽  
Author(s):  
Axel Gosseries

Evidence provided by the scientific community strongly suggests that limits should be placed on greenhouse gas (GHG) emissions. This means that states, firms, and individuals will have to face potentially serious burdens if they are to implement these limits. Which principles of justice should guide a global regime aimed at reducing greenhouse gas (GHG) emissions originating from human activities, and most notably from CO2 emissions? This is both a crucial and difficult question. Admittedly, perhaps this question is too ambitious, given the uncertainties and complexities characterizing the issue of climate change. Yet, rather than listing them all at this stage, let us address the question in a straightforward manner, introducing some of these complexities as the need arises.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

Nowadays, the global climate change has been a worldwide concern and the greenhouse gases (GHG) emissions are considered as the primary cause of that. The United Nations Conference on Environment and Development (UNCED) divided countries into two groups: Annex I Parties and Non-Annex I Parties. Since Iran and all other countries in the Middle East are among Non-Annex I Parties, they are not required to submit annual GHG inventory report. However, the global climate change is a worldwide phenomenon so Middle Eastern countries should be involved and it is necessary to prepare such a report at least unofficially. In this paper the terminology and the methods to calculate GHG emissions will first be explained and then GHG emissions estimates for the Iranian power plants will be presented. Finally the results will be compared with GHG emissions from the Canadian electricity generation sector. The results for the Iranian power plants show that in 2005 greenhouse gas intensity for steam power plants, gas turbines and combined cycle power plants were 617, 773, and 462 g CO2eq/kWh, respectively with the overall intensity of 610 g CO2eq/kWh for all thermal power plants. This GHG intensity is directly depend on efficiency of power plants. Whereas, in 2004 GHG intensity for electricity generation sector in Canada for different fuels were as follows: Coal 1010, refined petroleum products 640, and natural gas 523 g CO2eq/kWh, which are comparable with same data for Iran. For average GHG intensity in the whole electricity generation sector the difference is much higher: Canada 222 vs. Iran 610g CO2eq/kWh. The reason is that in Canada a considerable portion of electricity is generated by hydro-electric and nuclear power plants in which they do not emit significant amount of GHG emissions. The average GHG intensity in electricity generation sector in Iran between 1995 and 2005 experienced 13% reduction. While in Canada at the same period of time there was 21% increase. However, the results demonstrate that still there are great potentials for GHG emissions reduction in Iran’s electricity generation sector.


2021 ◽  
Vol 15 ◽  
pp. 77-83
Author(s):  
Rodrigo Galbieri ◽  
André Felipe Simões

The approval of methodologies involving the transportation sector confronts methodological concepts that hinder the eligibility of such projects as Clean Development Mechanism, mainly because it is a segment whose emissions come from mobile sources. The verification of additionality and monitoring of emissions, in principle, can be regarded as some of the key barriers to fit transportation sector projects into the CDM framework. This paper discusses these issues and examines, in particular, the road-rail intermodality. Since the partial replacement of cargo transport via trucks by wagon trains presents a great potential for mitigating emissions of greenhouse gases, this paper also analyzes the characteristics that a project involving road-rail intermodality must possess in order to be approved by the Executive Board of the United Nations Framework Convention on Climate Change. It also analyzes the main difficulties that such a project might face.


Sign in / Sign up

Export Citation Format

Share Document