scholarly journals Heatwave Trends and the Population Exposure Over China in the 21st Century as Well as Under 1.5 °C and 2.0 °C Global Warmer Future Scenarios

2019 ◽  
Vol 11 (12) ◽  
pp. 3318 ◽  
Author(s):  
Zhansheng Li ◽  
Xiaolin Guo ◽  
Yuan Yang ◽  
Yang Hong ◽  
Zhongjing Wang ◽  
...  

Heatwaves exert negative socio-economic impacts and particularly have serious effects on public health. Based on the multi-model ensemble (MME) results of 10 downscaled high-resolution Fifth Phase of the Coupled Model Intercomparison Project (CMIP5) model output from NASA Earth Exchange Global Daily Downscaled Projections (NASA-GDDP), the intensity (largest lasting time), frequency and total duration of heatwaves over China as well as population exposure in the 21st century and at 1.5 °C and 2.0 °C above pre-industrial levels are investigated by using the three indices, the Heat Wave Duration Index (HWDI), annual total frequency of heatwaves (N_HW) and annual total days of heatwaves (T_HW) under RCP4.5 and RCP8.5. The MME results illustrate that heatwaves are projected to become more frequent (0.40/decade and 1.26/decade for N_HW), longer-lasting (3.78 days/decade and 14.59 days/decade for T_HW) as well as more extreme (1.07 days/decade and 2.90 days/decade for HWDI under RCP4.5 and RCP8.5 respectively) over China. High latitude and high altitude regions, e.g., the Tibetan Plateau and northern China, are projected to experience a larger increase of intensity, frequency and the total time of heatwaves compared with southern China (except Central China). The total population affected by heatwaves is projected to increase significantly and will reach 1.18 billion in later part of the 21st century, and there will be more and more people expected to suffer long heatwave time (T_HW) in the 21st century. Compared with a 2.0 °C global warming climate, holding the global warming below 1.5 °C can avoid 26.9% and 29.1% of the increase of HWDI, 34.7% and 39.64% for N_TW and 35.3%–40.10% of T_HW under RCP4.5 and RCP8.5 respectively. The half-degree less of warming will not only decrease the population exposure by 53–83 million but also avoid the threat caused by longer heatwave exposure under the two scenarios. Based on the comprehensive assessment of heatwave under the two RCP scenarios, this work would help to enhance the understanding of climate change and consequent risk in China and thus could provide useful information for making climate adaptation policies.

2010 ◽  
Vol 138 (6) ◽  
pp. 2375-2384 ◽  
Author(s):  
Qing Bao ◽  
Jing Yang ◽  
Yimin Liu ◽  
Guoxiong Wu ◽  
Bin Wang

Abstract Anomalous warming occurred over the Tibetan Plateau (TP) before and during the disastrous freezing rain and heavy snow hitting central and southern China in January 2008. The relationship between the TP warming and this extreme event is investigated with an atmospheric general circulation model. Two perpetual runs were performed. One is forced by the climatological mean sea surface temperatures in January as a control run; and the other has the same model setting as the control run except with an anomalous warming over the TP that mimics the observed temperature anomaly. The numerical results demonstrate that the TP warming induces favorable circulation conditions for the occurrence of this extreme event, which include the deepened lower-level South Asian trough, the enhanced lower-level southwesterly moisture transport in central-southern China, the lower-level cyclonic shear in the southerly flow over southeastern China, and the intensified Middle East jet stream in the middle and upper troposphere. Moreover, the anomalous TP warming results in a remarkable cold anomaly near the surface and a warm anomaly aloft over central China, forming a stable stratified inversion layer that favors the formation of the persistent freezing rain. The possible physical linkages between the TP warming and the relevant resultant circulation anomalies are proposed. The potential reason of the anomalous TP warming during the 2007–08 winter is also discussed.


Author(s):  
Xuerong Sun ◽  
Fei Ge ◽  
Yi Fan ◽  
Shoupeng Zhu ◽  
Quanliang Chen

Abstract Temperature extremes have increased during the past several decades and are expected to intensify under current rapid global warming over Southeast Asia (SEA). Exposure to rising temperatures in highly vulnerable regions affects populations, ecosystems, and other elements that may suffer potential losses. Here, we evaluate changes in temperature extremes and future population exposure over SEA at global warming levels (GWLs) of 2.0 °C and 3.0 °C using outputs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Results indicate that temperature extreme indices are projected to increase over SEA at both GWLs, with more significant magnitudes at 3.0 °C. However, daily temperature ranges (DTR) show a decrease. The substantial increase in total SEA population exposure to heat extremes from 730 million person-days at 2.0 °C GWL to 1,200 million person-days at 3.0 °C GWL is mostly contributed by the climate change component, accounting for 48%. In addition, if the global warming is restricted well below 2.0 °C, the avoided impacts in population exposure are prominent for most regions over SEA with the largest mitigation in the Philippines (PH). Aggregate population exposure to impacts is decreased by approximately 39% at 2.0 °C GWL, while the interaction component effect, which is associated with increased population and climate change, would decrease by 53%. This indicates the serious consequences for growing populations concurrent with global warming impacts if the current fossil-fueled development pathway is adhered to. The present study estimates the risks of increased temperature extremes and population exposure in a warmer future, and further emphasizes the necessity and urgency of implementing climate adaptation and mitigation strategies in SEA.


Author(s):  
Xiaodong Liu ◽  
Libin Yan

As a unique and high gigantic plateau, the Tibetan Plateau (TP) is sensitive and vulnerable to global climate change, and its climate change tendencies and the corresponding impact on regional ecosystems and water resources can provide an early alarm for global and mid-latitude climate changes. Growing evidence suggests that the TP has experienced more significant warming than its surrounding areas during past decades, especially at elevations higher than 4 km. Greater warming at higher elevations than at lower elevations has been reported in several major mountainous regions on earth, and this interesting phenomenon is known as elevation-dependent climate change, or elevation-dependent warming (EDW).At the beginning of the 21st century, Chinese scholars first noticed that the TP had experienced significant warming since the mid-1950s, especially in winter, and that the latest warming period in the TP occurred earlier than enhanced global warming since the 1970s. The Chinese also first reported that the warming rates increased with the elevation in the TP and its neighborhood, and the TP was one of the most sensitive areas to global climate change. Later, additional studies, using more and longer observations from meteorological stations and satellites, shed light on the detailed characteristics of EDW in terms of mean, minimum, and maximum temperatures and in different seasons. For example, it was found that the daily minimum temperature showed the most evident EDW in comparison to the mean and daily maximum temperatures, and EDW is more significant in winter than in other seasons. The mean daily minimum and maximum temperatures also maintained increasing trends in the context of EDW. Despite a global warming hiatus since the turn of the 21st century, the TP exhibited persistent warming from 2001 to 2012.Although EDW has been demonstrated by more and more observations and modeling studies, the underlying mechanisms for EDW are not entirely clear owing to sparse, discontinuous, and insufficient observations of climate change processes. Based on limited observations and model simulations, several factors and their combinations have been proposed to be responsible for EDW, including the snow-albedo feedback, cloud-radiation effects, water vapor and radiative fluxes, and aerosols forcing. At present, however, various explanations of the mechanisms for EDW are mainly derived from model-based research, lacking more solid observational evidence. Therefore, to comprehensively understand the mechanisms of EDW, a more extensive and multiple-perspective climate monitoring system is urgently needed in the areas of the TP with high elevations and complex terrains.High-elevation climate change may have resulted in a series of environmental consequences, such as vegetation changes, permafrost melting, and glacier shrinkage, in mountainous areas. In particular, the glacial retreat could alter the headwater environments on the TP and the hydrometeorological characteristics of several major rivers in Asia, threatening the water supply for the people living in the adjacent countries. Taking into account the climate-model projections that the warming trend will continue over the TP in the coming decades, this region’s climate change and the relevant environmental consequences should be of great concern to both scientists and the general public.


2018 ◽  
Vol 482 (3) ◽  
pp. 315-318
Author(s):  
E. Volodin ◽  
◽  
A. Gritsun ◽  
Keyword(s):  

2017 ◽  
Vol 17 (16) ◽  
pp. 10109-10123 ◽  
Author(s):  
Zhenyu Han ◽  
Botao Zhou ◽  
Ying Xu ◽  
Jia Wu ◽  
Ying Shi

Abstract. Based on the dynamic downscaling by the regional climate model RegCM4 from three CMIP5 global models under the historical and the RCP4.5 simulations, this article evaluated the performance of the RegCM4 downscaling simulations on the air environment carrying capacity (AEC) and weak ventilation days (WVDs) in China, which are applied to measure haze pollution potential. Their changes during the middle and the end of the 21st century were also projected. The evaluations show that the RegCM4 downscaling simulations can generally capture the observed features of the AEC and WVD distributions over the period 1986–2005. The projections indicate that the annual AEC tends to decrease and the annual WVDs tend to increase over almost the whole country except central China, concurrent with greater change by the late 21st century than by the middle of the 21st century. It suggests that annual haze pollution potential would be enlarged under the RCP4.5 scenario compared to the present. For seasonal change in the four main economic zones of China, it is projected consistently that there would be a higher probability of haze pollution risk over the Beijing–Tianjin–Hebei (BTH) region and the Yangtze River Delta (YRD) region in winter and over the Pearl River Delta (PRD) region in spring and summer in the context of the warming scenario. Over Northeast China (NEC), future climate change might reduce the AEC or increase the WVDs throughout the whole year, which favours the occurrence of haze pollution and thus the haze pollution risk would be aggravated. The relative contribution of different components related to the AEC change further indicates that changes in the boundary layer depth and the wind speed play leading roles in the AEC change over the BTH and NEC regions. In addition to those two factors, the precipitation change also exerts important impacts on the AEC change over the YRD and PRD zones.


2021 ◽  
pp. 1-46
Author(s):  
Chia-Chi Wang ◽  
Huang-Hsiung Hsu ◽  
Ying-Ting Chen

AbstractAn objective front detection method is applied to ERA5, CMIP5 historical, and RCP8.5 simulations to evaluate climate model performance in simulating front frequency and understand future projections of seasonal front activities. The study area is East Asia for two natural seasons, defined as winter (December 2nd –February 14th) and spring (February 15th –May 15th), in accordance with regional circulation and precipitation patterns. Seasonal means of atmospheric circulation and thermal structures are analyzed to understand possible factors responsible for future front changes.The front location and frequency in CMIP5 historical simulations are captured reasonably. Frontal precipitation accounts for more than 30% of total precipitation over subtropical regions. Projections suggest that winter fronts will decrease over East Asia, especially over southern China. Frontal precipitation is projected to decrease for 10-30%. Front frequency increases in the South China Sea and tropical western Pacific because of more tropical moisture supply, which enhances local moisture contrasts. During spring, southern China and Taiwan will experience fewer fronts and less frontal precipitation while central China, Korea, and Japan may experience more fronts and more frontal precipitation due to moisture flux from the south that enhances 𝜽𝒘 gradients.Consensus among CMIP5 models in front frequency tendency is evaluated. The models exhibit relatively high consensus in the decreasing trend over polar and subtropical frontal zone in winter and over southern China and Taiwan in spring that may prolong the dry season. Spring front activities are crucial for water resource and risk management in the southern China and Taiwan.


2011 ◽  
Vol 438 (1) ◽  
pp. 681-685 ◽  
Author(s):  
A. A. Velichko ◽  
O. K. Borisova
Keyword(s):  

2018 ◽  
Vol 482 (1) ◽  
pp. 1221-1224 ◽  
Author(s):  
E. M. Volodin ◽  
A. S. Gritsun
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document