local moisture
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 14 (12) ◽  
pp. 1215
Author(s):  
Elena-Emilia Tudoroiu ◽  
Cristina-Elena Dinu-Pîrvu ◽  
Mădălina Georgiana Albu Kaya ◽  
Lăcrămioara Popa ◽  
Valentina Anuța ◽  
...  

Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012034
Author(s):  
Thomas Lewis ◽  
Andreas Sarkany ◽  
Ernst Heiduk ◽  
Manfred Grüner ◽  
Thomas Bednar ◽  
...  

Abstract The article describes the current state of a project examining the influences on the moisture distribution in cold attics above concrete ceilings of residential buildings. Considerable research has been done on moisture damages in cold attics, especially in Scandinavia and North America, focussing on spaces above wooden ceilings. The project (ongoing until Sept 2021) underlying the article deals with cold attics above concrete ceilings resting on masonry walls, a frequent variant in Austria. Research was triggered by a regional Austrian building industry association to shed light onto recent detrimental moisture accumulation in the wooden wall plate (= bearing for the rafters along the eaves) and in the two EPS insulation layers on top of the ceiling. Suspected reasons for the moisture problems and for the local moisture distribution are 1) a too small diffusion resistance of the vapour retarder covering the ceiling, 2) insufficient (natural) attic ventilation and 3) convection, e. g. in the gap between the polystyrene blocks. In order to rank these potential causes by influence and also to find a practical solution a two stage experimental approach was chosen: 1) A handy small scale replica (order of dimension: 1m) of the situation was exposed to the according indoor and outdoor climate in a climate chamber. Different vapour retarders on top of the ceiling were chosen. 2) A larger 1:1 replica has been erected as well but not yet delivered monitoring data. In parallel, a hygrothermic model taking convection into account was established and simulations carried out. The project will deliver a contribution to the Austrian standard on moisture safety 8110-2 on how to judge the moisture safety of joints via simulation.


2021 ◽  
Author(s):  
Yubo Liu ◽  
Monica Garcia ◽  
Chi Zhang ◽  
Qiuhong Tang

Abstract. The inherently dry summer climate of the Iberian Peninsula (IP) is undergoing drought exacerbated by more intense warming and reduced precipitation. Although many studies have studied changes in summer climate factors, it is still unclear how the changes in moisture contribution from the source lead to the decrease in summer precipitation. This study investigates the differences in the IP precipitationshed between 1980–1997 and 1998–2019 using the Water Accounting Model-2layers with ERA5 data, and assesses the role of local recycling and external moisture in reducing summer precipitation. Our findings indicate that the moisture contributions from the local IP, and from the west and the east of the precipitationshed contributed 1.7, 3.6 and 1.1 mm mon−1 less precipitation after 1997 than before 1997, accounting for 26 %, 57 % and 17 % of the main source supply reduction, respectively. The significant downward trend of the IP local recycling closely links to the disappearance of the wet years after 1997 as well as the decrease of local contribution in the dry years. Moreover, the feedback between the weakened local moisture recycling and the drier land surface can exacerbate the local moisture scarcity and summer drought.


2021 ◽  
Author(s):  
Agnes Pranindita ◽  
Lan Wang-Erlandsson ◽  
Ingo Fetzer ◽  
Adriaan J. Teuling

AbstractHeatwaves are extreme weather events that have become more frequent and intense in Europe over the past decades. Heatwaves are often coupled to droughts. The combination of them lead to severe ecological and socio-economic impacts. Heatwaves can self-amplify through internal climatic feedback that reduces local precipitation. Understanding the terrestrial sources of local precipitation during heatwaves might help identify mitigation strategies on land management and change that alleviate impacts. Moisture recycling of local water sources through evaporation allows a region to maintain precipitation in the same region or, by being transported by winds, in adjacent regions. To understand the role of terrestrial moisture sources for sustaining precipitation during heatwaves, we backtrack and analyse the precipitation sources of Northern, Western, and Southern sub-regions across Europe during 20 heatwave periods between 1979 and 2018 using the moisture tracking model Water Accounting Model-2layers (WAM-2layers). In Northern and Western Europe, we find that stabilizing anticyclonic patterns reduce the climatological westerly supply of moisture, mainly from the North Atlantic Ocean, and enhances the moisture flow from the eastern Euro-Asian continent and from within their own regions—suggesting over 10% shift of moisture supply from oceanic to terrestrial sources. In Southern Europe, limited local moisture sources result in a dramatic decrease in the local moisture recycling rate. Forests uniformly supply additional moisture to all regions during heatwaves and thus contribute to buffer local impacts. This study suggests that terrestrial moisture sources, especially forests, may potentially be important to mitigate moisture scarcity during heatwaves in Europe.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 855
Author(s):  
Barry Lynn ◽  
Yoav Yair ◽  
Yoav Levi ◽  
Shlomi Ziskin Ziv ◽  
Yuval Reuveni ◽  
...  

Motivated by poor forecasting of a deadly convective event within the Levant, the factor separation technique was used to investigate the impact of non-local versus local moisture sources on simulated precipitation and lightning rates in central and southern Israel on 25 and 26 April 2018. Both days saw unusually heavy rains, and it was hypothesized that antecedent precipitation on 25 April contributed to the development of deadly flooding late morning on the 26th, as well as strong lightning and heavy rains later the same day. Antecedent precipitation led to an increase in the precipitable water content and an overall increase in instability as measured by the Convective Available Potential Energy (CAPE). The deadly flood occurred in the area of the Tzafit river gorge (hereafter, Tzafit river), about 25 km southeast of the city of Dimona, a semi-arid region in the northeastern Negev desert. The heavy rains and strong lightning occurred throughout the Levant with local peaks in the vicinity of Jerusalem. Factor separation conducted in model simulations showed that local ground moisture sources had a large impact on the CAPE and subsequent precipitation and lightning rates in the area of Jerusalem, while non-local moisture sources enabled weak convection to occur over broad areas, with particularly strong convection in the area of the Tzafit river. The coupled impact of both moisture sources also led to localized enhanced areas of convective activity. The results suggest that forecast models for the Levant should endeavor to incorporate an accurate depiction of soil moisture to predict convective rain, especially during the typically drier spring-time season.


2021 ◽  
Vol 12 ◽  
Author(s):  
J. Robert Logan ◽  
Kathryn M. Jacobson ◽  
Peter J. Jacobson ◽  
Sarah E. Evans

Non-rainfall moisture (fog, dew, and water vapor; NRM) is an important driver of plant litter decomposition in grasslands, where it can contribute significantly to terrestrial carbon cycling. However, we still do not know whether microbial decomposers respond differently to NRM and rain, nor whether this response affects litter decomposition rates. To determine how local moisture regimes influence decomposer communities and their function, we examined fungal communities on standing grass litter at an NRM-dominated site and a rain-dominated site 75 km apart in the hyper-arid Namib Desert using a reciprocal transplant design. Dominant taxa at both sites consisted of both extremophilic and cosmopolitan species. Fungal communities differed between the two moisture regimes with environment having a considerably stronger effect on community composition than did stage of decomposition. Community composition was influenced by the availability of air-derived spores at each site and by specialization of fungi to their home environment; specifically, fungi from the cooler, moister NRM Site performed worse (measured as fungal biomass and litter mass loss) when moved to the warmer, drier rain-dominated site while Rain Site fungi performed equally well in both environments. Our results contribute to growing literature demonstrating that as climate change alters the frequency, magnitude and type of moisture events in arid ecosystems, litter decomposition rates may be altered and constrained by the composition of existing decomposer communities.


2021 ◽  
pp. 1-46
Author(s):  
Chia-Chi Wang ◽  
Huang-Hsiung Hsu ◽  
Ying-Ting Chen

AbstractAn objective front detection method is applied to ERA5, CMIP5 historical, and RCP8.5 simulations to evaluate climate model performance in simulating front frequency and understand future projections of seasonal front activities. The study area is East Asia for two natural seasons, defined as winter (December 2nd –February 14th) and spring (February 15th –May 15th), in accordance with regional circulation and precipitation patterns. Seasonal means of atmospheric circulation and thermal structures are analyzed to understand possible factors responsible for future front changes.The front location and frequency in CMIP5 historical simulations are captured reasonably. Frontal precipitation accounts for more than 30% of total precipitation over subtropical regions. Projections suggest that winter fronts will decrease over East Asia, especially over southern China. Frontal precipitation is projected to decrease for 10-30%. Front frequency increases in the South China Sea and tropical western Pacific because of more tropical moisture supply, which enhances local moisture contrasts. During spring, southern China and Taiwan will experience fewer fronts and less frontal precipitation while central China, Korea, and Japan may experience more fronts and more frontal precipitation due to moisture flux from the south that enhances 𝜽𝒘 gradients.Consensus among CMIP5 models in front frequency tendency is evaluated. The models exhibit relatively high consensus in the decreasing trend over polar and subtropical frontal zone in winter and over southern China and Taiwan in spring that may prolong the dry season. Spring front activities are crucial for water resource and risk management in the southern China and Taiwan.


2021 ◽  
Vol 8 ◽  
Author(s):  
Roger R. Fu ◽  
Kimberly Hess ◽  
Plinio Jaqueto ◽  
Valdir F. Novello ◽  
Tyler Kukla ◽  
...  

Quantum diamond microscope (QDM) magnetic field imaging is a recently developed technique capable of mapping magnetic field sources in geologic samples at 1 micrometer resolution. Applying QDM imaging to speleothems can provide high‐resolution time series of detrital input into the cave environment, which, in turn, can yield useful paleoenvironmental information. Here we map the magnetic field over a speleothem from midwest Brazil over a 174 year timespan with annual to sub-annual resolution and perform backfield remanence acquisition experiments to quantify changes in the magnetic grain population through time. We find that magnetic particles occur in highly enriched layers of 10–100 µm thickness that sample the same detrital source population. Combined with petrographic observations and electron microprobe mapping of Mg and Ca, we conclude that detrital enrichment in our sample is caused by drier conditions leading to slow or halted speleothem growth. This interpretation is compatible with oxygen isotopic data and implies that speleothem magnetism can be used to infer the past occurrence of drought and potentially quantify their duration. Future high-resolution magnetic imaging of speleothems may provide additional insight into the mechanism of detrital enrichment and establish their role as a proxy for local moisture and infiltration.


2020 ◽  
Author(s):  
Ajiao Chen ◽  
Huade Guan ◽  
Okke Batelaan

Abstract. This study identifies which factor, increased atmospheric CO2 concentration or local moisture deficit, dominates the temporal occurrence of hot extremes at the global scale. The wavelet decomposed GRACE Terrestrial Water Storage (TWS) is for the first time applied in examining the relationship between soil moisture (θ) and number of hot days in the hottest month (NHD). It reveals stronger θ–NHD relationships over larger areas than other commonly used soil moisture proxies (i.e., standardized precipitation index (SPI) and model derived product). During the study period 1985–2015, hot extreme occurrence with a dominant influence from increased atmospheric CO2 concentration is mainly observed in South America, Africa and Asia, while soil moisture deficit dominates the occurrence of hot extremes in larger areas, including parts of North America, West Europe, Australia, Southeast Asia and South Africa. Global action in reducing emissions will support combating hot extremes. In addition, important attention should be directed to address, e.g. by adaptive land management, the increasing moisture deficit in some regions.


2020 ◽  
Vol 148 (9) ◽  
pp. 3871-3892 ◽  
Author(s):  
Yu Du ◽  
Guixing Chen ◽  
Bin Han ◽  
Lanqiang Bai ◽  
Minghua Li

Abstract Through conducting dynamic and thermodynamic diagnoses as well as a series of numerical sensitivity simulations, we investigated the effects of the terrain, coastline, and cold pools on convection initiation (CI) and its subsequent upscale convective growth (UCG) during a case of heavy rainfall along the coast of South China. CI occurred at the vertex of the coastal concave mountain geometry as a combined result of coastal convergence, orographic lifting, and mesoscale ascent driven by the terminus of a marine boundary layer jet (MBLJ). In numerical simulations with the coastline or terrain of South China removed, the coastal CI does not occur or becomes weaker as the MBLJ extends farther north, suggesting that the coastline and terrain play a role in CI. In addition, local small-scale terrain can modulate the detailed location and timing of CI and UCG. When the coastal concave terrain and coastline near the CI are artificially removed or filled by additional mountains, the orographic lifting and the local convergence along the coast correspondingly change, which strongly affects the CI and UCG. From a thermodynamic perspective, the coastal concave terrain plays the role of a local moisture “catcher,” which promotes low-level moistening by blocking water vapor coming from an upstream moist tongue over the ocean. Furthermore, new convection is continuously generated by the lifting of low-level moist southerlies at the leading edges of cold pools that tend to move southeastward because of the blocking coastal mountains. Sensitivity experiments suggest that the MCS becomes weaker and moves more slowly when cold pools are weakened through a reduction of rain-evaporation cooling.


Sign in / Sign up

Export Citation Format

Share Document