scholarly journals Improvement of Human Thermal Comfort by Optimizing the Airflow Induced by a Ceiling Fan

2019 ◽  
Vol 11 (12) ◽  
pp. 3370 ◽  
Author(s):  
Hsin-Hung Lin

The purpose of this study is to investigate the relationship between the greenhouse effect and the overuse of electricity and energy under a sustainable environment. The goal is to investigate the airflow that is induced by ceiling fans, by measuring human body temperature. In the simulation model, the thermal plume phenomenon is observed in the indoor environment. By changing the ceiling fan parameters, the influence of the airflow is investigated by practical measurement of human body temperature. The indoor convective heat transfer is enhanced by installing a ceiling fan, which affects the whole body thermal sensation (WBTS). Different scenarios are reviewed by adjusting the fan speed in the simulation model, so that the distribution of human body temperature can be determined. By modeling the blade plane of the ceiling fan, the airflow characteristics can be determined by making the simulation model rotate in order to assess the thermal comfort characteristics. As the ceiling fan generates circulation within the domain, the thermal comfort is significantly enhanced. By keeping a reasonable thermal comfort level, a higher room temperature or a higher heat load is allowed so that a sustainable environment can be maintained without affecting the indoor thermal comfort or the efficiency of energy usage.

2019 ◽  
Vol 213 ◽  
pp. 02086
Author(s):  
Václav Tesař ◽  
Jozef Kordík

Recent ideas in development of garments for thermal comfort in desert climates concentrate on textile containing small capsules filled with material melting to store latent heat at roughly human body temperature. This cools the garment wearer during the hot day and later keeps him warm in the cold desert night. This article investigates the melting process in a single scaled up model of spherical capsule filled with n-eicosane – a material melting at Tm = 35.7 ˚C. In the experiment, the capsule model was heated starting from the initial temperature 30˚C by warm water at 50.4 ˚C. The large scale of the model made possible study of details of the melting process.


2014 ◽  
Vol 644-650 ◽  
pp. 1452-1455 ◽  
Author(s):  
Li Li

Bed interface material can affect the person's temperature characteristics. This article is based on ergonomics principle and method, paralyzed group for the audience to carry the mattress temperature sensation characteristic experiments. Through the subjective survey, found that paralyzed sponge mattress material local temperature influence the human body, through the objective experiment, it is pointed out that different sponge mattress different effects on human body temperature; correlation between subjective and objective analysis found: Waist temperature on the maximum total thermal comfort; the best waves sponge thermal comfort; consistent with the results of subjective and objective analysis.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25731-25737
Author(s):  
Maria Cristina Righetti ◽  
Maria Laura Di Lorenzo ◽  
Patrizia Cinelli ◽  
Massimo Gazzano

At room temperature and at the human body temperature, all the amorphous fraction is mobile in poly(butylene succinate).


2018 ◽  
Vol 164 ◽  
pp. 01017 ◽  
Author(s):  
Jalinas ◽  
Wahyu Kusuma Raharja ◽  
Bobby Putra Emas Wijaya

The heart is one of the most important organs in the human body. One way to know heart health is to measure the number of heart beats per minute and body temperature also shows health, many heart rate and body temperature devices but can only be accessed offline. This research aims to design a heart rate detector and human body temperature that the measurement results can be accessed via web pages anywhere and anytime. This device can be used by many users by entering different ID numbers. The design consists of input blocks: pulse sensor, DS18B20 sensor and 3x4 keypad button. Process blocks: Arduino Mega 2560 Microcontroller, Ethernet Shield, router and USB modem. And output block: 16x2 LCD and mobile phone or PC to access web page. Based on the test results, this tool successfully measures the heart rate with an average error percentage of 2.702 % when compared with the oxymeter tool. On the measurement of body temperature get the result of the average error percentage of 2.18 %.


2019 ◽  
Author(s):  
Myroslava Protsiv ◽  
Catherine Ley ◽  
Joanna Lankester ◽  
Trevor Hastie ◽  
Julie Parsonnet

2021 ◽  
Vol 20 ◽  
pp. 31-39
Author(s):  
Zayed Almheiri ◽  
Rawan Aleid ◽  
Sharul Sham Dol

The purpose of this research is to conduct aerodynamics study and design a hybrid drone system of fixed-wing and multi-copter. The mission of this drone is to measure human body temperature during COVID19 pandemic. The specific aim of the drone is to fly and cover larger industrial areas roughly about 50 km2 with longer flying time than the conventional drone, of about 1.5 hours. The applications of the simulation software such as XFLR5 and ANSYS have a big impact in identifying areas that need to be improved for the drone system. XFLR5 software was used to compare the characteristics of different airfoils with highest lift over drag, L/D ratio. Based on the airfoil selection, it was found that NACA 4412 airfoil produces the highest L/D ratio. The detailed geometry of the drone system includes a fuselage length of 1.9 meters and wingspan of 2 meters. Moreover, 10 sheets of solar panels were placed along the wing for sustainable flight operation to cover wider areas of mission. The structural analysis was done on ANSYS to test the elastic stress, equivalent strain, deformation, factor of safety pressure as well as lift and drag forces under various operational conditions and payloads. The landing gear was analyzed for harsh landing. ANSYS Computational Fluid Dynamics (CFD) was utilized to study the aerodynamics of the drone at different parameters such as the velocities and angles of attack during the operation. This design ensures the stability of the drone during the temperature measurement phase. The best thermal-imaging camera for such purpose would be the Vue Pro R 336, 45° radiometric drone thermal camera with a resolution of 640 x 512 pixels. This camera has the advantage of a permanent continuous out focus that give the ability of taking measurements even if there was changing on the altitude or any kind of vibrations.


2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Prashant P. Patil ◽  
Sanjeet Kumar ◽  
Amandeep Kaur ◽  
Samriti Midha ◽  
Kanika Bansal ◽  
...  

Stenotrophomonas maltophilia is a typical example of an environmental originated opportunistic human pathogen, which can thrive at different habitats including the human body and can cause a wide range of infections. It must cope with heat stress during transition from the environment to the human body as the physiological temperature of the human body (37 °C) is higher than environmental niches (22–30 °C). Interestingly, S. rhizophila a phylogenetic neighbour of S. maltophilia within genus Stenotrophomonas is unable to grow at 37 °C. Thus, it is crucial to understand how S. maltophilia is adapted to human body temperature, which could suggest its evolution as an opportunistic human pathogen. In this study, we have performed comparative transcriptome analysis of S. maltophilia grown at 28 and 37 °C as temperature representative for environmental niches and the human body, respectively. RNA-Seq analysis revealed several interesting findings showing alterations in gene-expression levels at 28 and 37 °C, which can play an important role during infection. We have observed downregulation of genes involved in cellular motility, energy production and metabolism, replication and repair whereas upregulation of VirB/D4 type IV secretion system, aerotaxis, cation diffusion facilitator family transporter and LacI family transcriptional regulators at 37 °C. Microscopy and plate assays corroborated altered expression of genes involved in motility. The results obtained enhance our understanding of the strategies employed by S. maltophilia during adaptation towards the human body.


Sign in / Sign up

Export Citation Format

Share Document