scholarly journals Predicting Sheet and Rill Erosion of Shihmen Reservoir Watershed in Taiwan Using Machine Learning

2019 ◽  
Vol 11 (13) ◽  
pp. 3615 ◽  
Author(s):  
Kieu Anh Nguyen ◽  
Walter Chen ◽  
Bor-Shiun Lin ◽  
Uma Seeboonruang ◽  
Kent Thomas

Shihmen Reservoir watershed is vital to the water supply in Northern Taiwan but the reservoir has been heavily impacted by sedimentation and soil erosion since 1964. The purpose of this study was to explore the capability of machine learning algorithms, such as decision tree and random forest, to predict soil erosion (sheet and rill erosion) depths in the Shihmen reservoir watershed. The accuracy of the models was evaluated using the RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), and R2. Moreover, the models were verified against the multiple regression analysis, which is commonly used in statistical analysis. The predictors of these models were 14 environmental factors which influence soil erosion, whereas the target was 550 erosion pins installed at 55 locations (on 55 slopes) and monitored over a period of approximately three years. The data sets for the models were separated into 70% for the training data and 30% for the testing data, using the simple random sampling and stratified random sampling methods. The results show that the random forest algorithm performed the best of the three methods. Moreover, the stratified random sampling method had better results among the two sampling methods, as anticipated. The average error (RMSE relative to 1:1 line) of the stratified random sampling method of the random forest algorithm is 0.93 mm/yr in the training data and 1.75 mm/yr in the testing data, respectively. Finally, the random forest algorithm predicted that type of slope, slope direction, and sub-watershed are the three most important factors of the 14 environmental factors collected and used in this study for splits in the trees and thus they are the three most important factors affecting the depth of sheet and rill erosion in the Shihmen Reservoir watershed. The results of this study can be employed by decision-makers to improve soil conservation planning and watershed remediation.

2021 ◽  
Vol 5 (2) ◽  
pp. 640
Author(s):  
Mulkan Azhari ◽  
Zakaria Situmorang ◽  
Rika Rosnelly

In this study aims to compare the performance of several classification algorithms namely C4.5, Random Forest, SVM, and naive bayes. Research data in the form of JISC participant data amounting to 200 data. Training data amounted to 140 (70%) and testing data amounted to 60 (30%). Classification simulation using data mining tools in the form of rapidminer. The results showed that . In the C4.5 algorithm obtained accuracy of 86.67%. Random Forest algorithm obtained accuracy of 83.33%. In SVM algorithm obtained accuracy of 95%. Naive Bayes' algorithm obtained an accuracy of 86.67%. The highest algorithm accuracy is in SVM algorithm and the smallest is in random forest algorithm


2018 ◽  
Vol 192 ◽  
pp. 02040 ◽  
Author(s):  
Kieu Anh Nguyen ◽  
Walter Chen

Nowadays, the storage capacity of a reservoir reduced by sediment deposition is a concern of many countries in the world. Therefore, understanding the soil erosion and transportation process is a significant matter, which helps to manage and prevent sediments entering the reservoir. The main objective of this study is to examine the sediments reaching the outlet of a basin by empirical sediment delivery ratio (SDR) equations and the gross soil erosion. The Shihmen reservoir watershed is used as the study area. Because steep terrain is a characteristic feature of the study area, two SDR models that depend on the slope of the mainstream channel and the relief-length ratio of the watershed are chosen. It is found that the Maner (1958) model, which uses the relief-length ratio, is the better model of the two. We believe that this empirical research improves our understanding of the sediment delivery process occurring in the study area.


2020 ◽  
Vol 8 (6) ◽  
pp. 1623-1630

As huge amount of data accumulating currently, Challenges to draw out the required amount of data from available information is needed. Machine learning contributes to various fields. The fast-growing population caused the evolution of a wide range of diseases. This intern resulted in the need for the machine learning model that uses the patient's datasets. From different sources of datasets analysis, cancer is the most hazardous disease, it may cause the death of the forbearer. The outcome of the conducted surveys states cancer can be nearly cured in the initial stages and it may also cause the death of an affected person in later stages. One of the major types of cancer is lung cancer. It highly depends on the past data which requires detection in early stages. The recommended work is based on the machine learning algorithm for grouping the individual details into categories to predict whether they are going to expose to cancer in the early stage itself. Random forest algorithm is implemented, it results in more efficiency of 97% compare to KNN and Naive Bayes. Further, the KNN algorithm doesn't learn anything from training data but uses it for classification. Naive Bayes results in the inaccuracy of prediction. The proposed system is for predicting the chances of lung cancer by displaying three levels namely low, medium, and high. Thus, mortality rates can be reduced significantly.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1387 ◽  
Author(s):  
Yi-Hsin Liu ◽  
Dong-Huang Li ◽  
Walter Chen ◽  
Bor-Shiun Lin ◽  
Uma Seeboonruang ◽  
...  

Soil erosion is a global problem that will become worse as a result of climate change. While many parts of the world are speculating about the effect of increased rainfall intensity and frequency on soil erosion, Taiwan’s mountainous areas are already facing the power of rainfall erosivity more than six times the global average. To improve the modeling ability of extreme rainfall conditions on highly rugged terrains, we use two analysis units to simulate soil erosion at the Shihmen reservoir watershed in northern Taiwan. The first one is the grid cell method, which divides the study area into 10 m by 10 m grid cells. The second one is the slope unit method, which divides the study area using natural breaks in landform. We compared the modeling results with field measurements of erosion pins. To our surprise, the grid cell method is much more accurate in predicting soil erosion than the slope unit method, although the slope unit method resembles the real terrains much better than the grid cell method. The average erosion pin measurement is 6.5 mm in the Shihmen reservoir watershed, which is equivalent to 90.6 t ha−1 yr−1 of soil erosion.


2016 ◽  
Vol 15 (3) ◽  
pp. 6563-6569
Author(s):  
S.J.SATHISH AARON JOSEPH ◽  
R. BALASUBRAMANIAN

Intrusion detection is one of the major necessities of the current networked environment, where every information is available in its corresponding digital form. This paper presents an enhanced tree based approach that can be used to perform intrusion detection faster and with better accuracy. The training data is subject to the random forest algorithm. This algorithm is a combination of tree predictors, and each tree depends upon the random vector generated. Spark based implementations of the Random Forest algorithm is used in a Hadoop cluster on datasets with varied imbalance to obtain the results. It has been observed that the classifier provided results in real time with an accuracy >90%, hence is more appropriate for online intrusion detection.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1808 ◽  
Author(s):  
Yi-Chin Chen ◽  
Ying-Hsin Wu ◽  
Che-Wei Shen ◽  
Yu-Jia Chiu

Qualifying sediment dynamic in a reservoir watershed is essential for water resource management. This study proposed an integrated model of Grid-based Sediment Production and Transport Model (GSPTM) at watershed scale to evaluate the dynamic of sediment production and transport in the Shihmen Reservoir watershed in Taiwan. The GSPTM integrates several models, revealing landslide susceptibility and processes of rainfall–runoff, sediment production from landslide and soil erosion, debris flow and mass movement, and sediment transport. For modeling rainfall–runoff process, the tanks model gives surface runoff volume and soil water index as a hydrological parameter for a logistic regression-based landslide susceptibility model. Then, applying landslide model with a scaling relation of volume and area predicts landslide occurrence. The Universal Soil Loss Equation is then used for calculating soil erosion volume. Finally, incorporating runoff-routing algorithm and the Hunt’s model achieves the dynamical modeling of sediment transport. The landslide module was calibrated using a well-documented inventory during 10 heavy rainfall or typhoon events since 2004. A simulation of Typhoon Morakot event was performed to evaluate model’s performance. The results show the simulation agrees with the tendency of runoff and sediment discharge evolution with an acceptable overestimation of peak runoff, and predicts more precise sediment discharge than rating methods do. In addition, with clear distribution of sediment mass trapped in the mountainous area, the GSPTM also showed a sediment delivery ratio of 30% to quantify how much mass produced by landslide and soil erosion is still trapped in mountainous area. The GSPTM is verified to be useful and capable of modeling the dynamic of sediment production and transport at watershed level, and can provide useful information for sustainable development of Shihmen Reservoir watershed.


2019 ◽  
Vol 11 (2) ◽  
pp. 355 ◽  
Author(s):  
Bor-Shiun Lin ◽  
Chun-Kai Chen ◽  
Kent Thomas ◽  
Chen-Kun Hsu ◽  
Hsing-Chuan Ho

The estimation of soil erosion in Taiwan and many countries of the world is based on the widely used universal soil loss equation (USLE), which includes the factor of soil erodibility (K-factor). In Taiwan, K-factor values are referenced from past research compiled in the Taiwan Soil and Water Conservation Manual, but there is limited data for the downstream area of the Shihmen reservoir watershed. The designated K-factor from the manual cannot be directly applied to large-scale regional levels and also cannot distinguish and clarify the difference of soil erosion between small field plots or subdivisions. In view of the above, this study establishes additional values of K-factor by utilizing the double rings infiltration test and measures of soil physical–chemical properties and increases the spatial resolution of K-factor map for Shihmen reservoir watershed. Furthermore, the established values of K-factors were validated with the designated value set at Fuxing Sanmin from the manual for verifying the correctness of estimates. It is found that the comparative results agree well with established estimates within an allowable error range. Thus, the K-factors established by this study update the previous K-factor system and can be spatially estimated for any area of interest within the Shihmen reservoir watershed and improving upon past limitations.


SinkrOn ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 9-20
Author(s):  
Antonius Yadi Kuntoro

Abstract — The current Governor of DKI Jakarta, even though he has been elected since 2017 is always interesting to talk about or even comment on. Comments that appear come from the media directly or through social media. Twitter has become one of the social media that is often used as a media to comment on elected governors and can even become a trending topic on Twitter social media. Netizens who comment are also varied, some are always Tweeting criticism, some are commenting Positively, and some are only re-Tweeting. In this research, a prediction of whether active Netizens will tend to always lead to Positive or Negative comments will be carried out in this study. Model algorithms used are Decision Tree, Naïve Bayes, Random Forest, and also Ensemble. Twitter data that is processed must go through preprocessing first before proceeding using Rapidminer. In trials using Rapidminer conducted in four trials by dividing into two parts, namely testing data and training data. Comparisons made are 10% testing data: 90% Training data, then 20% testing data: 80% training data, then 30% testing data: 70% training data, and the last is 35% testing data: 65% training data. The average Accuracy for the Decision Tree algorithm is 93.15%, while for the Naïve Bayes algorithm the Accuracy is 91.55%, then for the Random Forest algorithm is 93.41, and the last is the Ensemble algorithm with an Accuracy of 93, 42%. here. Keywords — Decision Tree, Naïve Bayes, Random Forest, Set, Twitter.  


2018 ◽  
Vol 192 ◽  
pp. 02041
Author(s):  
Yi-Hsin Liu ◽  
Kieu Anh Nguyen ◽  
Walter Chen ◽  
Jatuwat Wattanasetpong ◽  
Uma Seeboonruang

Tropical watersheds in Taiwan and Thailand face the same severe soil erosion problem that is increasing at an alarming rate. In order to evaluate the severity of soil erosion, we quantitatively investigate the issue using a common soil erosion model (Universal Soil Loss Equation, USLE) on the Shihmen reservoir watershed of Taiwan and the Lam Phra Ploeng basin of Thailand, and compare their respective erosion factors. The results show an interesting contrast between the two watersheds. Some of the factors (rainfall factor, slope-steepness factor) are higher in the Shihmen reservoir watershed, while others (soil erodibility factor, cover and management factor) are higher in the Lam Phra Ploeng basin. The net result is that these factors cancel each other out, and the amount of soil erosion of the two watersheds are very similar at 68.03 t/ha/yr and 67.57 t/ha/yr, respectively.


Sign in / Sign up

Export Citation Format

Share Document