scholarly journals Integrated Hydrological-Hydraulic Model for Flood Simulation in Tropical Urban Catchment

2019 ◽  
Vol 11 (23) ◽  
pp. 6700 ◽  
Author(s):  
Hasrul Hazman Hasan ◽  
Siti Fatin Mohd Razali ◽  
Ahmad Zafuan Ibrahim Ahmad Zaki ◽  
Firdaus Mohamad Hamzah

In recent decades, Malaysia has become one of the world’s most urbanized nations, causing severe flash flooding. Urbanization should meet the population’s needs by increasing the development of paved areas, which has significantly changed the catchment’s hydrological and hydraulic characteristics. Therefore, the frequency of flash flooding in Malaysia’s urban areas has grown year after year. Numerous techniques have been used, including the statistical approach, modeling, and storm design methods, in flood simulation. This research integrated hydrology and hydraulic models to simulate the urban flood events in the Aur River catchment. The primary objective is to determine water level and forecast peak flow based on hydrological assessment in the drainage system using XPSWMM software. The rainfall data for 60 min was used for this study in the hydrological analysis by obtaining an intensity-duration-frequency curve and peak flow value (Q peak). XPSWMM is used to simulate the response of a catchment to rainfall events in which runoff, water depth profile, and outflow hydrograph are obtained. Peak runoff is also obtained from the modified rational method for validation purposes. The proposed method was verified by comparing the result with the standard method. This is essential to identify flash flooding, which can lead to efficient flood mitigation planning and management in the urban catchment. The increase in residential areas results in the alteration of time of concentration, water quantity, and flow rate. Thus, to mitigate present and future problems, the effects of urbanization on water resources and flood should be analyzed.

2021 ◽  
Author(s):  
Guoqiang Peng ◽  
Zhuo Zhang ◽  
Tian Zhang ◽  
Zhiyao Song ◽  
Arif Masrur

Abstract Urban pluvial flash floods have become a matter of widespread concern, as they severely impact people’s lives in urban areas. Hydrological and hydraulic models have been widely used for urban flood management and urban planning. Traditionally, to reduce the complexity of urban flood modelling and simulations, simplification or generalization methods have been used; for example, some models focus on the simulation of overland water flow, and some models focus on the simulation of the water flow in sewer systems. However, the water flow of urban floods includes both overland flow and sewer system flow. The overland flow processes are impacted by many different geographical features in what is an extremely spatially heterogeneous environment. Therefore, this article is based on two widely used models (SWMM and ANUGA) that are coupled to develop a bi-directional method of simulating water flow processes in urban areas. The open source overland flow model uses the unstructured triangular as the spatial discretization scheme. The unstructured triangular-based hydraulic model can be better used to capture the spatial heterogeneity of the urban surfaces. So, the unstructured triangular-based model is an essential condition for heterogeneous feature-based urban flood simulation. The experiments indicate that the proposed coupled model in this article can accurately depict surface waterlogged areas and that the heterogeneous feature-based urban flood model can be used to determine different types of urban flow processes.


2021 ◽  
Vol 13 (22) ◽  
pp. 12850
Author(s):  
Pallavi Tomar ◽  
Suraj Kumar Singh ◽  
Shruti Kanga ◽  
Gowhar Meraj ◽  
Nikola Kranjčić ◽  
...  

Urban floods are very destructive and have significant socioeconomic repercussions in regions with a common flooding prevalence. Various researchers have laid down numerous approaches for analyzing the evolution of floods and their consequences. One primary goal of such approaches is to identify the areas vulnerable to floods for risk reduction and management purposes. The present paper proposes an integrated remote sensing, geographic information system (GIS), and field survey-based approach for identifying and predicting urban flood-prone areas. The work is unique in theory since the methodology proposed finds application in urban areas wherein the cause of flooding, in addition to heavy rainfall, is also the inefficient urban drainage system. The work has been carried out in Delhi’s Yamuna River National Capital Territory (NCT) area, considered one of India’s most frequently flooded urban centers, to analyze the causes of its flooding and supplement the existing forecasting models. Research is based on an integrated strategy to evaluate and map the highest flood boundary and identify the area affected along the Yamuna River NCT of Delhi. In addition to understanding the causal factors behind frequent flooding in the area, using field-based information, we developed a GIS model to help authorities to manage the floods using catchment precipitation and gauge level relationship. The identification of areas susceptible to floods shall act as an early warning tool to safeguard life and property and help authorities plan in advance for the eventuality of such an event in the study area.


Author(s):  
Sahar Zia ◽  
Safdar A. Shirazi ◽  
Muhammad Nasar-u-Minallah

Urban flooding is getting attention due to its adverse impact on urban lives in mega cities of the developing world particularly Pakistan. This study aims at finding a suitable methodology for mapping urban flooded areas to estimate urban flooding vulnerability risks in the cities of developing countries particularly Lahore, Pakistan. To detect the urban flooded vulnerability and risk areas due to natural disaster, GIS-based integrated Analytical Hierarchy Process (AHP) is applied for the case of Lahore, which is the second most populous city and capital of the Punjab, Pakistan. For the present research, the flood risk mapping is prepared by considering these significant physical factors like elevation, slope, and distribution of rainfall, land use, density of the drainage network, and soil type. Results show that the land use factor is the most significant to detect vulnerable areas near roads and commercial areas. For instance, this method of detection is 88%, 80% and 70% accurate for roads, commercial and residential areas. The methodology implemented in the present research can provide a practical tool and techniques to relevant policy and decision-makers authorities to prioritize and actions to mitigate flood risk and vulnerabilities and identify certain vulnerable urban areas, while formulating a methodology for future urban flood risk and vulnerability mitigation through an objectively simple and organizationally secure approach. 


2020 ◽  
Author(s):  
Yuan-Fong Su ◽  
Yan-Ting Lin ◽  
Jiun-Huei Jang ◽  
Jen-Yu Han

Abstract. Sophisticated flood simulation in urban areas is a challenging task due to the difficulties in data acquisition and model verification. This study incorporates three rapid-growing technologies, i.e. volunteered geographic information (VGI), unmanned aerial vehicle (UAV), and computational flood simulation (CFS) to reconstruct the flash flood event occurred in 14 June 2015, GongGuan, Taipei. The high-resolution digital elevation model (DEM) generated by a UAV and the real-time VGI photos acquired from social network are served to establish and validate the CFS model, respectively. The DEM data are resampled based on two grid sizes to evaluate the influence of terrain resolution on flood simulations. The results show that flood scenario can be more accurately modelled as DEM resolution increases with better agreement between simulation and observation in terms of flood occurrence time and water depth. The incorporation of UAV and VGI lower the barrier of sophisticated CFS and shows great potential in flood impact and loss assessment in urban areas.


Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 150 ◽  
Author(s):  
Giampaolo Zanin ◽  
Lucia Bortolini ◽  
Maurizio Borin

With the purpose to study a solution based on Sustainable Urban Drainage Systems (SUDS) to reduce and treat stormwater runoff in urban areas, a bioretention pond (BP) was realized in the Agripolis campus of the University of Padova, Italy. The BP collected overflow water volumes of the rainwater drainage system of a 2270 m2 drainage area consisting almost entirely of impervious surfaces. Sixty-six Tech-IA® floating elements, supporting four plants each, were laid on the water surface. Eleven species of herbaceous perennial helophyte plants, with ornamental features, were used and tested. The early growth results of the BP functioning showed that nearly 50% of the total inflow water volume was stored or evapotranspirated, reducing the peak discharge on the urban drainage system. Among plants, Alisma parviflora, Caltha palustris, Iris ‘Black Gamecock’, Lysimachia punctata ‘Alexander’, Oenanthe javanica ‘Flamingo’, Mentha aquatica, Phalaris arundinacea ‘Picta’, and Typha laxmannii had the best survival and growth performances. A. parviflora and M. aquatica appeared interesting also for pollutant reduction in runoff water.


Author(s):  
Pham Thi Anh ◽  
Nguyen Thi Bao Ngoc

Urban flooding has become a regular phenomenon in many towns and cities in the world over the past years. Flooding in urban areas in Ho Chi Minh City poses serious challenges not only by affecting large numbers of people and properties in urban areas but also directly hindering the economic growth of the city. Despite the huge technical effort to improve the city's drainage system, which is necessitated by phenomenal growth of the city and the challenges of climate change and land subsidence, it is impossible to put and end to flooding. The human factor appears an important element in the flooding problem and the efforts of flood reduction. In this study the emphasis was laid on the issue of inappropriate garbage disposal which leads to obstruction of drainage systems. As a part of a well-planned strategy an interactive survey was conducted in about 820 households in flooding areas. The survey focused on awareness and behavior of public garbage disposal of households living in flooded areas. People have an understanding of the causes of flooding, and have a sense of environmental protection, they can contribute to reducing flooding. In addition to technological solutions, community awareness, solutions for management and sanctioning are necessary.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 134
Author(s):  
Airlangga Mardjono ◽  
Pitojo Tri Juwon ◽  
Lily Montarcih Limantara ◽  
Ery Suhartan

Various infrastructures such as flood levees, dams and reservoirs of flood control began to be developed in the 19th century to the 20th century. These buildings are very effective in controlling the flow of rivers and preventing flood waters from entering residential areas located in flood-prone areas. Flooding in urban areas has a huge impact, covering all aspects of life as well as on the landscape. Ciliwung is one of the rivers that allegedly contributed to the problem of flood in Jakarta, various engineering done on Ciliwung to help control flooding in Jakarta. One of the engineering done is the construction plan of Ciawi Reservoir and Sukamahi Reservoir. In this research, the writer performed the flood calculation using Nakayasu while method of flooding is calculated using the pool routine level method. The effectiveness of these two reservoirs can be determined by simulating floods in the existing condition and comparing them with the flood simulation after the construction of the dam. The final test of this research is to determine the effectiveness level of Ciawi and Sukamahi dam infrastructure in reducing flood volume in Jakarta.  


2011 ◽  
Vol 219-220 ◽  
pp. 1267-1270 ◽  
Author(s):  
Chuan Qi Li ◽  
Chao Jia ◽  
Bang Shu Xu

A decision support system for flood warning has been developed for Jinan city. It is a web based distributed system that integrates GIS, databases and models. Urban Flood Simulation model is used as a real-time flood forecasting model. Mike Flood model is used to simulate pre-formulated flood scenarios for urban areas. The objective of the system is to simulate and forecast river and urban floods on the basis of real-time meteorological situation and rainfall available, and to serve as a tool for making decision.


2016 ◽  
Vol 1 (01) ◽  
pp. 18
Author(s):  
Rusyidina Tamimi ◽  
Sri Wahyuni ◽  
Entin Hidayah

AbstractThe water logging or even flood always occurs on Srikoyo road in every rainy season. The condition emerges because of the imbalance between the number of rainwater catchment area and the rapid increase of residential areas. Besides, the drainage channels along the road of Srikoyo are not sufficient enough to hold rainwater well. The process of evaluation is done by applying the method of hydrological analysis to determine the maximum discharge modeling used for evaluating the capacity of the existing drainage channels. The output of the hydrology analysis calculation comes up in rainfall intensity which is required as the data input for SWMM modeling. SWMM modeling is used in this evaluation since it is a model of rainfall-runoff simulation which is used for simulating both quantity and quality of the surface runoff of urban areas. The result of the evaluation using the software SWMM suggests that there are several number of water logging during the return period of 1, 2, 5, and 10 years. There are 3 areas encounter flood in the return period of 1 year, 10 areas in the return period of 2 years, 18 areas in the return period of 5 years, and 19 areas in the return period of 10 years.Keywords: SWMM, Flooding, Drainage, Evaluation AbstrakPada musim penghujan Jalan Srikoyo selalu tergenangi air. Terjadinya genangan di Jalan Srikoyo diakibatkan oleh area resapan air hujan tidak seimbang dengan pesatnya wilayah pemukiman. Selain itu, saluran drainase di sepanjang ruas Jalan Srikoyo kurang memadai dan tidak dapat berfungsi dengan baik untuk menampung air hujan. Dengan adanya permasalahan ini dilakukan proses evaluasi, evaluasi ini dilakukan dengan menggunakan metode analisis hidrologi untuk menentukan debit pemodelan maksimal yang digunakan untuk mengevaluasi kapasitas saluran drainase yang ada. Dimana output perhitungan analisis hidrologi berupa intensitas hujan yang diperlukan sebagai data inputan untuk pemodelan SWMM. SWMM digunakan dalam evaluasi ini dikarenakan SWMM merupakan model simulasi hujan-aliran (rainfall-runoff) yang digunakan untuk mensimulasikan kuantitas maupun kualitas limpasan permukaan dari daerah perkotaan. Dari evaluasi menggunakan software SWMM, pada kala ulang 1 tahun didapatkan 3 node lokasi banjir, kala ulang 2 tahun didapatkan 10 node lokasi banjir, kala ulang 5 tahun didapatkan 18 node lokasi banjir dan kala ulang 10 tahun didapatkan 19 node lokasi banjir.Kata kunci: SWMM, Banjir, Drainase, Evaluasi


Author(s):  
Eka Purnamasari ◽  
Robiatul Adawiyah ◽  
Akhmad Gazali

Pelambuan is a sub-district in West Banjarmasin, Banjarmasin City, South Kalimantan Province. Part of the Pelambuan area is still a slum area because there is no drainage, garbage problems, sanitation, etc. So it needs awareness and the role of community members to love the environment and live healthily. Thus, the residents must be given an understanding of the integrated environmental drainage system (ecodrain) in residential areas to maintain and create a healthy environment. In principle, ecodrain is a program to restore and improve the quality of urban drainage flow from pollution caused by garbage or wastewater due to the indiscipline of urban residents who throw garbage or wastewater into channels or rivers that cross urban areas. Handling of drainage, which is carried out in an integrated manner by handling waste and wastewater with an environmentally sound concept (ecodrain), can be carried out in the following ways: installation and operation of waste filters, application of proper waste management with the 3R approach (Reduce, Reuse & Recycle) community-based, community-based sanitation improvement (Sanimas), river water quality restoration through bioremediation, construction of rainwater catchment wells to reduce the volume of rainwater runoff that will flow into drainage channels and rivers.


Sign in / Sign up

Export Citation Format

Share Document