scholarly journals ANALYZING THE VELOCITY OF VEGETATION PHENOLOGY OVER THE TIBETAN PLATEAU USING GIMMS NDVI3g DATA

Author(s):  
Y. K. Zhou

Global environmental change is rapidly altering the dynamics of terrestrial vegetation, and phenology is a classic proxy to detect the response of vegetation to the changes. On the Tibetan Plateau, the earlier spring and delayed autumn vegetation phenology is widely reported. Remotely sensed NDVI can serve as a good data source for vegetation phenology study. Here GIMMS NDVI3g data was used to detect vegetation phenology status on the Tibetan Plateau. The spatial and temporal gradients are combined to depict the velocity of vegetation expanding process. This velocity index represents the instantaneous local velocity along the Earth’s surface needed to maintain constant vegetation condition. This study found that NDVI velocity show a complex spatial pattern. A considerable number of regions display a later starting of growing season (SOS) and earlier end of growing season (EOS) reflected by the velocity change, particularly in the central part of the plateau. Nearly 74 % vegetation experienced a shortened growing season length. Totally, the magnitude of the phenology velocity is at a small level that reveals there is not a significant variation of vegetation phenology under the climate change context.

2020 ◽  
Vol 12 (3) ◽  
pp. 968
Author(s):  
Jiang Wei Wang ◽  
Meng Li ◽  
Guang Yu Zhang ◽  
Hao Rui Zhang ◽  
Cheng Qun Yu

Precipitation and growing season length (GSL) are vital abiotic and biotic variables in controlling vegetation productivity in alpine regions. However, their relative effects on vegetation productivity have not been fully understood. In this study, we examined the responses of the maximum normalized difference vegetation index (NDVImax) to growing season precipitation (GSP) and GSL from 2000 to 2013 in 36 alpine grassland sites on the Tibetan Plateau. Our results indicated that NDVImax showed a positive relationship with prolonged GSL (R2 = 0.12) and GSP (R2 = 0.39). The linear slope of NDVImax increased with that of GSP rather than GSL. Therefore, GSP had a stronger effect on NDVImax than did GSL in alpine grasslands on the Tibetan Plateau.


2017 ◽  
Vol 114 (27) ◽  
pp. 6966-6971 ◽  
Author(s):  
Bao Yang ◽  
Minhui He ◽  
Vladimir Shishov ◽  
Ivan Tychkov ◽  
Eugene Vaganov ◽  
...  

Phenological responses of vegetation to climate, in particular to the ongoing warming trend, have received much attention. However, divergent results from the analyses of remote sensing data have been obtained for the Tibetan Plateau (TP), the world’s largest high-elevation region. This study provides a perspective on vegetation phenology shifts during 1960–2014, gained using an innovative approach based on a well-validated, process-based, tree-ring growth model that is independent of temporal changes in technical properties and image quality of remote sensing products. Twenty composite site chronologies were analyzed, comprising about 3,000 trees from forested areas across the TP. We found that the start of the growing season (SOS) has advanced, on average, by 0.28 d/y over the period 1960–2014. The end of the growing season (EOS) has been delayed, by an estimated 0.33 d/y during 1982–2014. No significant changes in SOS or EOS were observed during 1960–1981. April–June and August–September minimum temperatures are the main climatic drivers for SOS and EOS, respectively. An increase of 1 °C in April–June minimum temperature shifted the dates of xylem phenology by 6 to 7 d, lengthening the period of tree-ring formation. This study extends the chronology of TP phenology farther back in time and reconciles the disparate views on SOS derived from remote sensing data. Scaling up this analysis may improve understanding of climate change effects and related phenological and plant productivity on a global scale.


2021 ◽  
Vol 13 (8) ◽  
pp. 1484
Author(s):  
Jianing Fang ◽  
Benjamin Zaitchik

The coupling of rapid warming and wetland degradation on the Tibetan Plateau has motivated studies of climate influence on wetland change in the region. These studies typically examine large, topographically homogeneous regions, whereas conservation efforts sometimes require fine-grained information in rugged terrain. This study addresses topographically constrained wetlands in Eastern Tibetan, where headers report significant wetland degradation. We used Landsat images to examine changes in wetland areas and Sentinel-1 SAR images to investigate water level and vegetation structure. We also analyzed trends in precipitation, growing season length, and reference evapotranspiration in weather station records. Snow cover and the vegetation growing season were quantified using MODIS observations. We analyzed estimates of actual evapotranspiration using the Atmosphere-Land Exchange Inverse model (ALEXI) and the Simplified Surface Energy Balance model (SSEBop). Satellite-informed analyses failed to confirm herders’ accounts of reduced wetland function, as no coherent trends were found in wetland area, water content, or vegetation structure. An analysis of meteorological records did indicate a warming-induced increase in reference evapotranspiration, and both meteorological records and satellites suggest that the growing season had lengthened, potentially increasing water demand and driving wetland change. The discrepancies between the satellite data and local observations pointed to temporal, spatial, and epistemological gaps in combining scientific data with empirical evidence in understanding wetland change on the Tibetan Plateau.


Oryx ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Xuchang Liang ◽  
Aili Kang ◽  
Nathalie Pettorelli

AbstractWe tested a series of hypotheses on drivers of habitat selection by the Vulnerable wild yak Bos mutus, combining distribution-wide sighting data with species distribution modelling approaches. The results indicate that climatic conditions are of paramount importance in shaping the wild yak's distribution on the Tibetan Plateau. Habitat selection patterns were seasonal, with yaks appearing to select areas closer to villages during the vegetation-growing season. Unexpectedly, our index of forage quantity had a limited effect in determining the distribution of the species. Overall, our results suggest that expected changes in climate for this region could have a significant impact on habitat availability for wild yaks, and we call for more attention to be focused on the unique wildlife in this ecosystem.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2605 ◽  
Author(s):  
Huamin Zhang ◽  
Mingjun Ding ◽  
Lanhui Li ◽  
Linshan Liu

Based on daily observation records at 277 meteorological stations on the Tibetan Plateau (TP) and its surrounding areas during 1970–2017, drought evolution was investigated using the Standardized Precipitation Evapotranspiration Index (SPEI). First, the spatiotemporal changes in the growing season of SPEI (SPEIgs) were re-examined using the Mann–Kendall and Sen’s slope approach—the piecewise linear regression and intensity analysis approach. Then, the persistence of the SPEIgs trend was predicted by the Hurst exponent. The results showed that the SPEIgs on the TP exhibited a significant increasing trend at the rate of 0.10 decade−1 (p < 0.05) and that there is no significant trend shift in SPEIgs (p = 0.37), indicating that the TP tended to undergo continuous wetting during 1970–2017. In contrast, the areas surrounding the TP underwent a significant trend shift from an increase to a decrease in SPEIgs around 1984 (p < 0.05), resulting in a weak decreasing trend overall. Spatially, most of the stations on the TP were characterized by an increasing trend in SPEIgs, except those on the Eastern fringe of TP. The rate of drought/wet changes was relatively fast during the 1970s and 1980s, and gradually slowed afterward on the TP. Finally, the consistent increasing trend and decreasing trend of SPEIgs on the TP and the area East of the TP were predicted to continue in the future, respectively. Our results highlight that the TP experienced a significant continuous wetting trend in the growing season during 1970–2017, and this trend is likely to continue.


2017 ◽  
Vol 10 (11) ◽  
pp. 1098-1117 ◽  
Author(s):  
Jiaqiang Du ◽  
Ping He ◽  
Shifeng Fang ◽  
Weiling Liu ◽  
Xinjie Yuan ◽  
...  

2015 ◽  
Vol 112 (30) ◽  
pp. 9299-9304 ◽  
Author(s):  
Miaogen Shen ◽  
Shilong Piao ◽  
Su-Jong Jeong ◽  
Liming Zhou ◽  
Zhenzhong Zeng ◽  
...  

In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.


Sign in / Sign up

Export Citation Format

Share Document