scholarly journals Eco-Efficiency in Measuring the Sustainable Production of Agricultural Crops

2020 ◽  
Vol 12 (4) ◽  
pp. 1418 ◽  
Author(s):  
Rafał Baum ◽  
Jerzy Bieńkowski

Agriculture is one of the main factors with a direct impact on the natural environment (soil, water and air). An increased interest in the environmental impact of agricultural production results is due to—among other factors—significant human interference in the natural circulation of nutrients, posing a potential threat to the balance of ecosystems. Under current conditions, it is necessary to develop comprehensive diagnostic methods to control production processes in a way that would reduce costs and environmental burden throughout the product’s life cycle. Only a holistic approach that integrates environmental and economic analysis meets the criteria of analysis complexity, which is one of the main goals of methodical analysis of sustainable development. The article presents the results of the integrated environmental and economic assessment of selected crops. Maize and rapeseed production were assessed using the life cycle assessment (LCA) and life cycle costing (LCC) methodologies. The analysis was carried out on farms representing plant- and animal-based farming types. The conclusion presented in the study was based on the data from a study group consisting of 69 private commercial farms located in two regions of Poland. The calculated carbon footprint of both of winter rape and grain maize production was found to be higher in animal farming types. Pig farming type presented the highest overall costs of these crops, based on the approach of the LCC. Inclusion of carbon sequestration to the assessment of greenhouse warming potential allowed for the reduction of the net global warming potential (GWP) impact associated with the production of the analyzed crops. In both crops, mineral fertilization was the main factor influencing both the total carbon footprint and the LCC.

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1877
Author(s):  
Małgorzata Holka ◽  
Jerzy Bieńkowski

Given the problem of climate change and the requirements laid down by the European Union in the field of gradual decarbonization of production, it is necessary to implement solutions of reducing greenhouse gas (GHG) emissions into agricultural practice. This research paper aimed to evaluate the carbon footprint and life-cycle costs of grain maize production in various tillage systems. The material for the analyses was data from 2015–2017 collected on 15 farms located in the Wielkopolska region (Poland) and growing maize for grain in three tillage systems: conventional, reduced, and no-tillage. The life-cycle assessment and life-cycle costing methodologies were applied to assess the GHG emissions and costs associated with the grain maize production in the stages from “cradle-to-farm gate”, i.e., from obtaining raw materials and producing means for agricultural production, through the processes of maize cultivation to grain harvesting. The calculated values of the carbon footprint indicator for maize production in conventional, reduced, and no-tillage systems were 2347.4, 2353.4, and 1868.7 CO2 eq. ha−1, respectively. The largest source of GHG emissions was the use of nitrogen fertilizers. Non-inversion tillage with cover crops and leaving a large amount of crop residues in the field increased the sequestration of organic carbon and contributed to a significant reduction of the carbon footprint in maize production. The conventional tillage system demonstrated the highest overall life-cycle costs per hectare.


2014 ◽  
Vol 32 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Zaid Alwan ◽  
Paul Jones

Purpose – The construction industry has focused on operational and embodied energy of buildings as a way of becoming more sustainable, however, with more emphasis on the former. The purpose of this paper is to highlight the impact that embodied energy of construction materials can have on the decision making when designing buildings, and ultimately on the environment. This is an important aspect that has often been overlooked when calculating a building's carbon footprint; and its inclusion this approach presents a more holistic life cycle assessment. Design/methodology/approach – A building project was chosen that is currently being designed; the design team for the project have been tasked by the client to make the facility exemplary in terms of its sustainability. This building has a limited construction palette; therefore the embodied energy component can be accurately calculated. The authors of this paper are also part of the design team for the building so they have full access to Building Information Modelling (BIM) models and production information. An inventory of materials was obtained for the building and embodied energy coefficients applied to assess the key building components. The total operational energy was identified using benchmarking to produce a carbon footprint for the facility. Findings – The results indicate that while operational energy is more significant over the long term, the embodied energy of key materials should not be ignored, and is likely to be a bigger proportion of the total carbon in a low carbon building. The components with high embodied energy have also been identified. The design team have responded to this by altering the design to significantly reduce the embodied energy within these key components – and thus make the building far more sustainable in this regard. Research limitations/implications – It may be is a challenge to create components inventories for whole buildings or for refurbishments. However, a potential future approach for is application may be to use a BIM model to simplify this process by imbedding embodied energy inventories within the software, as part of the BIM menus. Originality/value – This case study identifies the importance of considering carbon use during the whole-life cycle of buildings, as well as highlighting the use of carbon offsetting. The paper presents an original approach to the research by using a “live” building as a case study with a focus on the embodied energy of each component of the scheme. The operational energy is also being calculated, the combined data are currently informing the design approach for the building. As part of the analysis, the building was modelled in BIM software.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (1) ◽  
pp. 17-24 ◽  
Author(s):  
PIA JOUR ◽  
KARIN HALLDÉN ◽  
EVA WACKERBERG

This paper presents a life cycle assessment (LCA) of bleached eucalyptus kraft pulp production in Brazil. The entire production system was investigated, starting with forestry and ending with bleached pulp at the gate of the pulp mill. Alternative bleaching sequences were compared for three different scenarios using somewhat different elemental chlorine-free (ECF) sequences: Dhot(EPO)DD, Dhot(EPO)DP, and aZeDP. The main difference between the scenarios investigated was the magnitude of the carbon footprint contribution from bleaching. For the base case and chemical island scenarios (both reflecting Brazilian conditions), the contribution was 15%-18% of the total carbon footprint. For the ecoinvent scenario, the corresponding share was 34%-41%. The ecoinvent scenario represents generic LCA data for bleaching chemicals. Ecoinvent is a public database commonly included in commercial LCA software. For each scenario, the alternative bleaching sequences studied resulted in similar carbon footprints of the bleached pulp. A comparison of the data from the different scenarios showed a large range of carbon footprints for the chemicals used for pulp bleaching. It is crucial to select data sets that are relevant in terms of geography and technology. The most dominant contributors to the carbon footprint of the unbleached pulp were forestry and pulp production. Although the focus has been on carbon footprints, the contributions to other environmental effects commonly included in LCAs were also assessed and only minor differences between the alternative bleaching sequences were found.


2012 ◽  
Vol 262 ◽  
pp. 577-580
Author(s):  
Ya Bo Fu ◽  
Wen Cai Xu ◽  
Yan Ru Jiang ◽  
Ge Zhou

The increasing concern on low carbon and environment protection has aroused a broader awareness of the sustainable development issues to be given to the environmental impacts of packaging products through the whole life cycle. The research of carbon footprint takes the high lights among these studies. The calculation of carbon emissions on commodities has shown many advantages on estimation of global greenhouse gas emissions. In this work, glass bottle liquor packaging was selected as the researching object, its equivalent carbon emissions were investigated by hybrid life cycle method. Through the carbon emissions research of the processes during the whole life cycle including raw materials’ production, packaging process, transportation, consumption and recycling, the carbon footprint on liquor packaging was calculated. The results indicated that the transportation and production of glass bottle contribute the most parts of total carbon emissions, which provides a case support for energy conservation and the development of green packaging.


2020 ◽  
Vol 12 (12) ◽  
pp. 5101 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Youssef Rouphael ◽  
Giuseppe Colla ◽  
Andrea Colantoni ◽  
Mariateresa Cardarelli

Plant biostimulants have gained great interest from the agrochemical industry and farmers because of their ability to enhance nutrient use efficiency and increase abiotic stress tolerance in crop production. However, despite the considerable potential of biostimulants for the sustainable development of the agricultural sector, the environmental evaluation of the application of biostimulants is still missing. Hence, this is the first study that focuses on the environmental assessment of the biostimulant action of arbuscular mycorrhizal fungus Glomus intraradices and vegetal-derived protein hydrolysate on two greenhouse vegetable crops, spinach and zucchini squash, under different fertilization regimes. The life cycle assessment from a cradle to gate perspective, which covers all processes related to crop cultivation up to harvest, was carried out to calculate the carbon footprint of the production chain for these two crops. The results of the comparative analysis revealed that the CO2 equivalent emissions of both crops were reduced due to the biostimulant applications. In particular, the effect of the mycorrhization on the reduction of carbon emissions compared to the un-mycorrhized control was higher in zucchini plants under organic fertilization (12%) than under mineral fertilization (7%). In addition, organic fertilization increased the total carbon footprint of zucchini (52%) compared with mineral fertilization. The results also showed that an increase of nitrogen fertilization from 15 to 45 kg N ha−1 in spinach production enhanced the total CO2 emissions per ton of harvested leaves in comparison with treatments that involved the foliar applications of protein hydrolysate together with a lower nitrogen input; this increase was 4% compared to the unfertilized treatment with application of biostimulant. This study can support decision-making in terms of agronomic technique choices in line with sustainable development of vegetable crop production.


2011 ◽  
Vol 12 (3) ◽  
pp. 263-279 ◽  
Author(s):  
Alan Brent ◽  
Sibbele Hietkamp ◽  
Russell Wise ◽  
Kenney O’Kennedy

The carbon footprint of materials and products is becoming an increasingly important factor in international trade. At present the carbon emissions balance of the South African economy is not well understood, especially the carbon emissions associated with imports and exports. An investigation was done of known economic input-output and life cycle analyses models addressing this shortcoming. The results reveal that South Africa is a major exporter of carbon; at least 129 per cent more carbon is associated with a dollar earned with exports than a dollar spent on imports, and the carbon footprint of the outflows on average, equates 37 per cent of the total carbon emissions of the economy. Such figures have serious policy-related implications in a future where international climate-change trade limitations will become stricter and binding.


2014 ◽  
Vol 998-999 ◽  
pp. 1520-1523
Author(s):  
Li Ping Wang ◽  
Bi Xi Dong ◽  
Meng Meng Yin

At present, the global warming has drew people`s attention to the emissions of greenhouse gases such as CO2, the essence of which is worrying about the more and more carbon emissions. PP-R pipe has been widely used in production and livelihood, so evaluating the carbon footprint of PP-R pipe is very necessary. This paper evaluated the carbon footprint of PP-R pipe from the production of raw materials to waste disposal, based on the life cycle assessment. The result of the study is that, in the life cycle of PP-R pipe 74.02% of the total carbon emissions come from the production of raw materials. But if using reclaimed materials to replace the total carbon emissions would reduce 52.90%. So an innovative technology of PP-R raw materials producing and using more reclaimed materials are the keys to cut down the carbon emissions of PP-R pipe.


2020 ◽  
Vol 12 (24) ◽  
pp. 10380
Author(s):  
Taitiya Kenneth Yuguda ◽  
Yi Li ◽  
Bobby Shekarau Luka ◽  
Goziya William Dzarma

Greenhouse gas (GHG) emissions from reservoirs are responsible for at most 2% of the overall warming effects of human activities. This study aimed at incorporating the GHG emissions of a reservoir (with irrigation/sugar production as its primary purpose), into the carbon footprint of sugar produced from irrigated sugarcane. This study adopts a life-cycle assessment (LCA) approach and encompasses the cradle-to-gate aspect of the international organization of standardization ISO 14040 guidelines. Results show that total carbon footprint of refined sugar could be as high as 5.71 kg CO2-eq/kg sugar, over its entire life cycle, depending on the priority of purposes allocated to a reservoir and sugarcane productivity. Findings also reveal that the dammed river contributes the most to GHG emissions 5.04 kg CO2-eq/kg sugar, followed by the agricultural stage 0.430 kg CO2-eq/kg sugar, the sugar factory 0.227 kg CO2-eq/kg sugar, and lastly the transportation stage 0.065 kg CO2-eq/kg sugar. The sensitivity analysis shows that carbon footprint CF of sugar production is largely influenced by the rate of biomass decomposition in the impounded reservoir over time, followed by the reservoir drawdown due to seasonal climatic fluctuations. Significant amounts of GHG emissions are correlated with the impoundment of reservoirs for water resource development projects, which may account for up to 80% of total GHG emissions to the reservoir’s primary purpose. Sugar production expansion, coupled with allocating more functions to a reservoir, significantly influences the CF of sugar per service purpose. This study is an indicator for policymakers to comprehend and make plans for the growing tradeoffs amongst key functions of reservoirs.


Sign in / Sign up

Export Citation Format

Share Document