scholarly journals An Economic and Technology Analysis of a New High-Efficiency Biomass Cogeneration System: A Case Study in DC County, China

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3957
Author(s):  
Hui Huang ◽  
Xiaoli Yan ◽  
Shizhong Song ◽  
Yingying Du ◽  
Yanlei Guo

Biomass is the fourth largest energy source in the world; it is easy to store and can be converted into various kinds of renewable energies. The biomass cogeneration system is an important way to utilize biomass energy, especially in northern China. At present, there are many problems in biomass power plants in China, such as high latent heat loss of chimney and cooling towers, low power generation efficiency, and thermal efficiency. In order to solve this problem, this paper introduces low vacuum circulating water heating technology in the biomass cogeneration system, and expounds the differences between China and Western countries in biomass power plants. Based on this background, the technology is redesigned and reformed to make it more suitable for the biomass fuel varieties in the power plant location, and realize the localization of technology and the expansion of scale. The application of this improved technology in China’s biomass cogeneration project is analyzed. Based on the biomass cogeneration project in the DC County of China, the analysis confirms that the designed low vacuum circulating water heating technology is suitable for biomass power generation projects with agricultural and forestry wastes as raw materials, and its application can greatly improve the heat utilization efficiency of the whole cogeneration system. At the same time, in order to estimate the possibility of profitable investment when the key financial parameters change, the financial risk is analyzed. The results show that the probability of 90% net present value (NPV) in 15 years is between 355.28 million RMB and 623.96 million RMB, and the internal rate of return can reach 17.7%.

2020 ◽  
Vol 12 (5) ◽  
pp. 1973 ◽  
Author(s):  
Lingling Wang ◽  
Tsunemi Watanabe

Given a lack of consideration for the role and importance of stakeholders and the importance of stakeholders in the operation of biomass power plants in China, a comprehensive analysis oriented toward stakeholder risk management is needed to further develop the country’s biomass energy industry. Accordingly, we analyzed institutional factors that contribute to or constrain progress in biomass power generation in China. Data were collected from 275 straw suppliers (farmers) living around a biomass power plant, 15 middlemen, five power plant managers, and five local government officers. Interviews were held with all the participants, but questionnaires were additionally administered to the straw suppliers. Results showed that: (1) risk transfer in the biomass supply chain is one of the reasons why farmers are unwilling to supply straw; (2) middlemen are vital intermediaries between biomass power plant managers and farmers as a middleman-based biomass supply system is necessary to guarantee the quantity of straw supply, and; (3) the institutional structure that underlies the Chinese biomass energy industry is immature.


Author(s):  
Yong Tian ◽  
Wen-Jing Liu ◽  
Qi-jie Jiang ◽  
Xin-Ying Xu

With the development of biomass power generation technology, biomass waste has a more excellent recycling value. The article establishes a biomass waste inventory model based on the material flow analysis method and predicts raw material waste’s energy utilization potential. The results show that the amount of biomass waste generated from 2016 to 2020 is on the rise. In 2020, biomass waste’s energy utilization can reach 107,802,300 tons, equivalent to 1,955.28PJ of energy. Through biomass energy analysis and emission analysis, the results show that the biomass waste can generate 182.02 billion kW⋅h in 2020, which can replace 35.9% of the region’s total power consumption, which is compared with the traditional power generation method under the same power generation capacity. Power generation can reduce SO2 emissions by 250,400 tons, NOx emissions by 399,300 tons, and PM10 emissions by 49,700 tons. Reduce direct economic losses by 712 million yuan. Therefore, Chinese promotion of the recycling of biomass waste and the acceleration of the biomass energy industry’s development is of great significance for reducing pollutant emissions and alleviating energy pressure.


Author(s):  
Vikram Muralidharan ◽  
Matthieu Vierling

Power generation in south Asia has witnessed a steep fall due to the shortage of natural gas supplies for power plants and poor water storage in reservoirs for low hydro power generation. Due to the current economic scenario, there is worldwide pressure to secure and make more gas and oil available to support global power needs. With constrained fuel sources and increasing environmental focus, the quest for higher efficiency would be imminent. Natural gas combined cycle plants operate at a very high efficiency, increasing the demand for gas. At the same time, countries may continue to look for alternate fuels such as coal and liquid fuels, including crude and residual oil, to increase energy stability and security. In over the past few decades, the technology for refining crude oil has gone through a significant transformation. With the advanced refining process, there are additional lighter distillates produced from crude that could significantly change the quality of residual oil used for producing heavy fuel. Using poor quality residual fuel in a gas turbine to generate power could have many challenges with regards to availability and efficiency of a gas turbine. The fuel needs to be treated prior to combustion and needs a frequent turbine cleaning to recover the lost performance due to fouling. This paper will discuss GE’s recently developed gas turbine features, including automatic water wash, smart cooldown and model based control (MBC) firing temperature control. These features could significantly increase availability and improve the average performance of heavy fuel oil (HFO). The duration of the gas turbine offline water wash sequence and the rate of output degradation due to fouling can be considerably reduced.


Author(s):  
Gregor Gnädig

Many Asian countries are experiencing economic growth which averages 5–10% per year. This environment has led to a privatization process in the power generation industry from typically state-run utilities to a system in which a federal agency oversees a market divided by private utilities and independent power producers (IPP) with the need for high efficiency, reliable power generation running on natural gas and diesel oil. In the 50 Hz market, modem, high efficient gas turbines of the type GT13E and GT13E2 have been chosen as prime movers in many combined cycle power plants in Asian countries. This paper includes a product description, and a general overview of GT13E and GT13E2 operating experience, well as an economic evaluation of a typical 500 MW combined cycle power plant.


2020 ◽  
Vol 145 ◽  
pp. 02056
Author(s):  
Haomin Zhang ◽  
Xingang Xu

To solve the problem of rapid development of domestic water tourism and water pollution in scenic waters, windsurfing technology and solar photovoltaic technology are applied to small and medium-sized sightseeing cruise ships. While optimizing the hull design and component coordination, the application of automatic control technology further improves the utilization efficiency of wind and light energy, and achieves the adaptation of the sail angle of attack and the efficient coupling of the two energies. The ship mainly uses the natural resources of solar energy and wind energy. It will not burn fossil fuels during the ship’s travel, thus reducing the emission of toxic and harmful substances, which has positive significance for environmental protection. In short, the solar wind-assisted power generation ship studied in this project has remarkable features such as zero emission, high degree of intelligence, significant wind-assisted effect, high efficiency of light energy utilization, and low hull space occupation. Compared with the ordinary lake area cruise ship, the energy-saving and emission reduction effect of the power generation ship is very obvious[1].


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2802 ◽  
Author(s):  
Kaiyan Luo ◽  
Xingping Zhang ◽  
Qinliang Tan

China has a huge potential of biomass power generation since it is a big agricultural producer and abundant in agriculture straw. However, the current straw supply system cannot guarantee the feedstock sufficiency for biomass power plants. The main reason is the high costs of straw collection and transportation because farmers are scattered across the country and farming in a small-scaled method for self-support. This study aims at solving the issue with the introduction of China’s rural official organizations to collect agriculture straw in a centralized way and to share benefits with farmers. We apply the approach of multi-agent modeling and simulation to analyze the farmer’s participation behavior within a co-opetition supply strategy after the rural official organizations are incorporated. The results demonstrate that farmers’ participation is positively affected by the cooperative enthusiasm of rural official organizations. In addition to those basic factors, such as straw price, transportation cost, and shipping distance, the benefit sharing policy has a significant impact on the equilibrium percentage of the cooperative farmers. We recommend that the Chinese central government encourage and support rural official organizations to participate in the agriculture straw supply chain, and the benefit sharing policy should be implemented with the precaution against free rides.


2013 ◽  
Vol 592-593 ◽  
pp. 590-593 ◽  
Author(s):  
Mattias Calmunger ◽  
Guo Cai Chai ◽  
Sten Johansson ◽  
Johan Moverare

Biomass power plants with high efficiency are desired as a renewable energy resource. High efficiency can be obtained by increasing temperature and pressure. An upgrade of the material performance to high temperature material is therefore required in order to meet the increased demands due to the higher temperature and the more corrosive environment. In this study, the materials high-temperature behaviours of AISI 304 and Alloy617 under slow deformation rate are evaluated using high-temperature long-term aged specimens subjected to slow strain rate tensile testing (SSRT) with strain rates down to 10-6/s at 700°C. Both materials show decreasing stress levels and elongation to fracture when tensile deformed using low strain rate and elevated temperature. At high-temperature and low strain rates cracking in grain boundaries due to larger precipitates formed during deformation is the most common fracture mechanism.


2021 ◽  
Vol 11 (1) ◽  
pp. 109-122
Author(s):  
Eduardo Pérez-Denicia ◽  
Fabián Fernández-Luqueño ◽  
Darnes Vilariño-Ayala

Power generation through renewable sources is an effective alternative to mitigate climate change as its environmental impact is lower compared to fossil fuels. However, socio-economic problems are constant in sites where power plants are installed, especially in developing countries. In this paper, an innovative methodology was developed to assess the suitability of electricity generation through solar, wind, and biomass energy. Unlike most studies found in scientific literature, this work considers social, environmental, and economic aspects as key to determine the suitability of energy projects. First, we carried out a comprehensive analysis on social acceptance and resilience towards renewable energy and the conditions for communities to benefit from these projects; then, we analyzed the availability and capacity of renewable energy sources in Mexico, as a case study. Next,  a set of indicators related to the three pillars of sustainability was developed to assess the conditions of each place with the best renewable resources in the country. The life cycle and capacity factor of each technology were also considered. Lastly, a mathematical model was developed to determine the most suitable locations and technologies for power generation. The results show a trend towards the states of northern Mexico, especially those bordering the United States, as the most viable for electricity generation. The most appropriate technology is wind energy. Finally, Oaxaca, the state with the best wind resources and current leader in wind power generation in Mexico is, by contrast, the least viable state for wind generation, as has been later confirmed by scientific evidence, as wind facilities are associated with severe socio-cultural and economic damage in host communities in this state.


Sign in / Sign up

Export Citation Format

Share Document