scholarly journals Simulating and Predicting Crop Yield and Soil Fertility under Climate Change with Fertilizer Management in Northeast China Based on the Decision Support System for Agrotechnology Transfer Model

2020 ◽  
Vol 12 (6) ◽  
pp. 2194 ◽  
Author(s):  
Wenting Yan ◽  
Wenting Jiang ◽  
Xiaori Han ◽  
Wei Hua ◽  
Jinfeng Yang ◽  
...  

The risks of climate change and soil degradation for the agricultural environment and crop production are increasingly prominent. Based on the limitations of land resources, it is important to explore a sustainable and effective fertilization strategy to reduce risks and ensure there is a high yield of grain and sustainable development of agriculture. Soil fertility underpins cultivated land, which is the most important resource of agricultural production, and is also the key for maintaining agricultural sustainability. The central elements of soil fertility are soil organic carbon (SOC) and soil nitrogen (SN). This study applied the Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) and the CENTURY-based soil module to simulate the trends of crop yields, SN storages and SOC storages until the end of this century under different climate change circumstances, based on a 36-year long-term experiment established at Shenyang site, China. Four fertilizer practices were applied: control (CK), combined chemical fertilizer of nitrogen, phosphorus, and potassium (NPK), NPK with manure (MNPK), and NPK fertilizers plus a high application rate of manure (hMNPK). The outcomes indicated that the DSSAT model can fully simulate the yields of maize and soybean as well as the dynamic stocks of the SN and SOC. Three Representative Concentration Pathways (RCP 2.6, RCP 4.5, RCP 8.5) for future development were chosen from the fifth assessment report of the United Nations Intergovernmental Panel on Climate Change (IPCC). Moreover, a baseline was installed. Crop yields, SN, and SOC storages from 2016 to 2100 were estimated under four climate scenarios (RCP 2.6, RCP 4.5, RCP 8.5, and Baseline). The RCP scenarios in some treatments reduced SN and SOC stocks and maize yield, and had no effect on soybean yield. However, the application of NPK with manure could improve crop yields, while it increased SN and SOC storages substantially. To some extent, the negative effects of climate scenarios could be mitigated by applying manure. In the RCP 4.5, maize yields of NPK, MNPK, and hMNPK treatments declined by 14.8%, 7.7%, and 6.2%, respectively, compared with that of NPK under Baseline. The NPK fertilizers plus manure treatments could cut the reduction of maize yield caused by climate change in half. Additionally, the SOC storage and SN of chemical fertilizers plus manure treatments under RCP scenarios increased by 20.2%–33.5% and 13.7%–21.7% compared with that of NPK under baseline, respectively. It was concluded that a rational combination of organic and inorganic fertilizer applications is a sustainable and effective agricultural measure to maintain food security and relieve environmental stresses.

2020 ◽  
Vol 12 (11) ◽  
pp. 275
Author(s):  
Charles Bwalya Chisanga ◽  
Elijah Phiri ◽  
Vernon R. N. Chinene

The impact of climate change on crop growth and yield can be predicted using crop simulation models. A study was conducted to assess the reliability and uncertainty of simulated maize yield for the near future in 2050s at Mount Makulu (latitude = 15.550o S, longitude = 28.250o E, altitude = 1213 m), Zambia. The Long Ashton Research Station Weather Generator (LARS-WG) was used to generate baseline (1980-2010) and future (2040-2069) climate scenarios for two Representative Concentration Pathways (RCP 4.5 and RCP 8.5). Results showed that mean temperature would increase by 2.09oC (RCP 4.5) and 2.56oC (RCP 8.5) relative to the baseline (1980-2010). However, rainfall would reduce by 9.84% (RCP 4.5) and 11.82% (RCP 8.5). The CERES-Maize model simulated results for rainfed maize growth showed that the simulated parameters; days after planting (DAP), biomass and grain yield would reduce from 2040-2069/1980-2010 under both RCP4.5 and RCP8.5 scenarios. The LARS-WG was successfully for our location can be used in generating climate scenarios for impact studies to inform policy, stakeholders and decision makers. Adaptation strategies to mitigate for the potential impact of climate change includes several sowing dates, cultivar selection that are efficient at using nitrogen fertilizer and planting new cultivars breeds that will thrive under low root soil water content and higher temperatures.


2007 ◽  
Vol 50 (4) ◽  
pp. 1467-1479 ◽  
Author(s):  
K. R. Thorp ◽  
W. D. Batchelor ◽  
J. O. Paz ◽  
A. L. Kaleita ◽  
K. C. DeJonge

Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 214 ◽  
Author(s):  
Jagadish Timsina

Meeting global demand of safe and healthy food for the ever-increasing population now and into the future is currently a crucial challenge. Increasing crop production by preserving environment and mitigating climate change should thus be the main goal of today’s agriculture. Conventional farming is characterized by use of high-yielding varieties, irrigation water, chemical fertilizers and synthetic pesticides to increase yields. However, due to either over- or misuse of chemical fertilizers or pesticides in many agro-ecosystems, such farming is often blamed for land degradation and environmental pollution and for adversely affecting the health of humans, plants, animals and aquatic ecosystems. Of all inputs required for increased agricultural production, nutrients are considered to be the most important ones. Organic farming, with use of organic sources of nutrients, is proposed as a sustainable strategy for producing safe, healthy and cheaper food and for restoring soil fertility and mitigating climate change. However, there are several myths and controversies surrounding the use of organic versus inorganic sources of nutrients. The objectives of this paper are: (i) to clarify some of the myths or misconceptions about organic versus inorganic sources of nutrients and (ii) to propose alternative solutions to increase on-farm biomass production for use as organic inputs for improving soil fertility and increasing crop yields. Common myths identified by this review include that organic materials/fertilizers can: (i) supply all required macro- and micro-nutrients for plants; (ii) improve physical, chemical and microbiological properties of soils; (iii) be applied universally on all soils; (iv) always produce quality products; (v) be cheaper and affordable; and (vi) build-up of large amount of soil organic matter. Other related myths are: “legumes can use entire amount of N2 fixed from atmosphere” and “bio-fertilizers increase nutrient content of soil.” Common myths regarding chemical fertilizers are that they: (i) are not easily available and affordable, (ii) degrade land, (iii) pollute environment and (iv) adversely affect health of humans, animals and agro-ecosystems. The review reveals that, except in some cases where higher yields (and higher profits) can be found from organic farming, their yields are generally 20–50% lower than that from conventional farming. The paper demonstrates that considering the current organic sources of nutrients in the developing countries, organic nutrients alone are not enough to increase crop yields to meet global food demand and that nutrients from inorganic and organic sources should preferably be applied at 75:25 ratio. The review identifies a new and alternative concept of Evergreen Agriculture (an extension of Agroforestry System), which has potential to supply organic nutrients in much higher amounts, improve on-farm soil fertility and meet nutrient demand of high-yielding crops, sequester carbon and mitigate greenhouse gas emissions, provide fodder for livestock and fuelwood for farmers and has potential to meet global food demand. Evergreen Agriculture has been widely adapted by tens of millions of farmers in several African countries and the review proposes for evaluation and scaling-up of such technology in Asian and Latin American countries too.


2020 ◽  
Vol 11 (6-1) ◽  
pp. 657-667
Author(s):  
Jung Hee Hyun ◽  
Ji Yeon Kim ◽  
Dong Kun Lee ◽  
Ju Young Huh ◽  
Chae Young Bae ◽  
...  

2020 ◽  
Vol 55 (11) ◽  
pp. 1267-1282
Author(s):  
Ramiro Meza-Palacios ◽  
Alberto A. Aguilar-Lasserre ◽  
Luis F. Morales-Mendoza ◽  
José O. Rico-Contreras ◽  
Luis H. Sánchez-Medel ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 639 ◽  
Author(s):  
Bright Freduah ◽  
Dilys MacCarthy ◽  
Myriam Adam ◽  
Mouhamed Ly ◽  
Alex Ruane ◽  
...  

Climate change is estimated to exacerbate existing challenges faced by smallholder farmers in Sub-Sahara Africa. However, limited studies quantify the extent of variation in climate change impact under these systems at the local scale. The Decision Support System for Agro-technological Transfer (DSSAT) was used to quantify variation in climate change impacts on maize yield under current agricultural practices in semi-arid regions of Senegal (Nioro du Rip) and Ghana (Navrongo and Tamale). Multi-benchmark climate models (Mid-Century, 2040–2069 for two Representative Concentration Pathways, RCP4.5 and RCP8.5), and multiple soil and management information from agronomic surveys were used as input for DSSAT. The average impact of climate scenarios on grain yield among farms ranged between −9% and −39% across sites. Substantial variation in climate response exists across farms in the same farming zone with relative standard deviations from 8% to 117% at Nioro du Rip, 13% to 64% in Navrongo and 9% to 37% in Tamale across climate models. Variations in fertilizer application, planting dates and soil types explained the variation in the impact among farms. This study provides insight into the complexities of the impact of climate scenarios on maize yield and the need for better representation of heterogeneous farming systems for optimized outcomes in adaptation and resilience planning in smallholder systems.


Sign in / Sign up

Export Citation Format

Share Document