scholarly journals Spatiotemporal Variations of Drought and Their Teleconnections with Large-Scale Climate Indices over the Poyang Lake Basin, China

2020 ◽  
Vol 12 (9) ◽  
pp. 3526 ◽  
Author(s):  
Weilin Liu ◽  
Shengnan Zhu ◽  
Yipeng Huang ◽  
Yifan Wan ◽  
Bin Wu ◽  
...  

The intensity and frequency of droughts in Poyang Lake Basin have been increasing due to global warming. To properly manage water resources and mitigate drought disasters, it is important to understand the long-term characteristics of drought and its possible link with large-scale climate indices. Based on the monthly meteorological data of 41 meteorological stations in Poyang Lake Basin from 1958 to 2017, the spatiotemporal variations of drought were investigated using the standardized precipitation evapotranspiration index (SPEI). Ensemble empirical mode decomposition (EEMD) methods and the modified Mann–Kendall (MMK) trend test were used to explore the spatiotemporal characteristics and trends of drought. Furthermore, to reveal possible links between drought variations and large-scale climate indices in Poyang Lake Basin, the relationships between SPEI and large-scale climate indices, such as North Atlantic Oscillation (NAO), El Niño–Southern Oscillation (ENSO), Arctic Oscillation (AO), Indian Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO) were examined using cross-wavelet transform. The results showed that the SPEI in Poyang Lake Basin exhibited relatively stable quasi-periodic oscillation, with approximate quasi-3-year and quasi-6-year periods at the inter-annual scale and quasi-15-year and quasi-30-year periods at the inter-decadal scale from 1958 to 2017. Moreover, the Poyang Lake Basin experienced an insignificantly wetter trend as a whole at the annual and seasonal scales during the period of 1958–2017, except for spring, which had a drought trend. The special characteristics of the trend variations were markedly different in the basin. The areas in which drought was most likely to occur were mainly located in the Poyang Lake region, northwest and south of the basin, respectively. Furthermore, relationships between the drought and six climate indices showed that the drought exhibited a significant temporal correlation with five climate indices at restricted intervals, except for IOD. The dominant influences of the large-scale climate indices on the drought evolutions shifted in the Poyang Lake Basin during 1958–2017, from the NAO, Niño 3.4, and the Southern Oscillation Index (SOI) before the late 1960s and early 1970s, to the AO and PDO during the 1980s, then to the NAO, AO and SOI after the early 2000s. The NAO, AO and SOI exerted a significant influence on the drought events in the basin. The results of this study will benefit regional water resource management, agriculture production, and ecosystem protection in the Poyang Lake Basin.

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1033
Author(s):  
Hua Zhu ◽  
Handan He ◽  
Hongxiang Fan ◽  
Ligang Xu ◽  
Jiahu Jiang ◽  
...  

Understanding the spatiotemporal regime of summer precipitation at local scales plays a key role in regional prevention and mitigation of floods disasters and water resources management. Previous works focused on spatiotemporal characteristics of a region as a whole but left the influence of associated physical factors on sub-regions unexplored. Based on the precipitation data of 77 meteorological stations in the Poyang Lake basin (PYLB) from 1959 to 2013, we have investigated regional characteristics of summer precipitation in the PYLB by integrating the rotated empirical orthogonal function (REOF) analysis with hierarchical clustering algorithm (HCA). Then the long-term variability of summer precipitation in sub-regions of the PYLB and possible links with large-scale circulations was investigated using multiple trend analyses, wavelet analysis and correlation analysis. The results indicate that summer precipitation variations in the PYLB were of very striking regional characteristics. The PYLB was divided into three independent sub-regions based on two leading REOF modes and silhouette coefficient (SC). These sub-regions were located in northern PYLB (sub-region I), central PYLB (sub-region II), and southern PYLB (sub-region III). The summer precipitation in different sub-regions exhibited distinct variation trends and periodicities, which was associated with different factors. All sub-regions show no trends over the whole period 1959–2013, rather they show trends in different periods. Trends per decade in annual summer precipitation in sub-region I and sub-region II were consistent for all periods with different start and end years. The oscillations periods with 2–3 years were found in summer precipitation of all the three sub-regions. Summer precipitation in sub-region I was significantly positively correlated with the previous Indian Ocean Dipole (IOD) event, but negatively correlated with East Asian Summer Monsoon (EASM). While summer precipitation in sub-region II and sub-region III showed weak teleconnections with climate indices. All of the results of this study are conducive to further understand both the regional climate variations in the PYLB and response to circulation patterns variations.


2016 ◽  
Vol 47 (S1) ◽  
pp. 51-68 ◽  
Author(s):  
Jun Shao ◽  
Jun Wang ◽  
Sunyun Lv ◽  
Jianping Bing

Based on the precipitation data of 21 meteorological stations in Poyang Lake basin, the temporal and spatial variability of seasonal precipitation was analyzed by wavelet analysis method. This study adopted the cross wavelet transform to analyze the correlation between the seasonal precipitation and climate indices in time and frequency scales, discussed the possible links between its precipitation variations and climate indices, and preliminarily analyzed its mechanism and regular pattern of variation. The results showed that the oscillations in 2–4 years' and 4–8 years' bands were the main variation periods of seasonal precipitation in Poyang Lake basin. In the 2–4 years' band, the years of rainfall peaks appearing in Poyang Lake were basically consistent with the years when El Niño appeared, and the precipitation oscillations in summer appeared more dramatic in space. According to analysis on the cross wavelet power spectra between different seasonal rainfalls and climate indices, certain correlations between climate factors and seasonal precipitation had existed in specific time periods. Large-scale climate oscillations like the El Niño/Southern Oscillation, North Atlantic Oscillation, Indian Ocean Dipole, and Pacific Decadal Oscillation caused the variability of large-scale circulations through their respective independent or inter-coupled climate systems, and affected the precipitation distribution in Poyang Lake basin by changing local climate conditions like the East Asian Monsoon.


2011 ◽  
Vol 63 (9) ◽  
pp. 1899-1905 ◽  
Author(s):  
Meiqiu Chen ◽  
Xiaohua Wei ◽  
Hongsheng Huang ◽  
Tiangui Lü

Protection of water environment while developing socio-economy is a challenging task for lake regions of many developing countries. Poyang Lake is the largest fresh water lake in China, with its total drainage area of 160,000 km2. In spite of rapid development of socio-economy in Poyang Lake region in the past several decades, water in Poyang Lake is of good quality and is known as the “last pot of clear water” of the Yangtze River Basin in China. In this paper, the reasons of “last pot of clear water” of Poyang Lake were analysed to demonstrate how economic development and environmental protection can be coordinated. There are three main reasons for contributing to this coordinated development: 1) the unique geomorphologic features of Poyang Lake and the short water residence time; 2) the matching of the basin physical boundary with the administrative boundary; and 3) the implementation of “Mountain-River-Lake Program” (MRL), with the ecosystem concept of “mountain as source, river as connection flow, and lake as storage”. In addition, a series of actions have been taken to coordinate development, utilisation, management and protection in the Poyang Lake basin. Our key experiences are: considering all basin components when focusing on lake environment protection is a guiding principle; raising the living standard of people through implementation of various eco-economic projects or models in the basin is the most important strategy; preventing soil and water erosion is critical for protecting water sources; and establishing an effective governance mechanism for basin management is essential. This successful, large-scale basin management model can be extended to any basin or lake regions of developing countries where both environmental protection and economic development are needed and coordinated.


2017 ◽  
Vol 62 (11) ◽  
pp. 1809-1824 ◽  
Author(s):  
Jianyu Liu ◽  
Qiang Zhang ◽  
Vijay P. Singh ◽  
Xihui Gu ◽  
Peijun Shi

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1027 ◽  
Author(s):  
Hao Cai ◽  
Yadong Mei ◽  
Yueyun Chen

Water resources and their utilization perform a critical role in sustainable development. A full comprehension of the decoupling relationship between water consumption and economic development is a prerequisite for sustainable water resource management. This thesis developed a decoupling index analysis model based on Hodrick–Prescott filtering; analyzed the spatial aggregation characteristics of Gross Domestic Product (GDP), water consumption, and the decoupling index by the Global and Local Moran’s Index; and calculated the spatial gravity migration characteristics of GDP, water consumption, and the decoupling index. A case study in the Poyang Lake basin was selected to analyze the relationship between water and the economy. The results indicated that decoupling status was steadier after extracting trend components. The decoupling index exhibited spatial outlier characteristics. The spatial gravity center migration directions of GDP and water consumption were opposite. Furthermore, the Poyang Lake basin was in a weak decoupling status, and its water use pattern was sustainable to a certain extent.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1522
Author(s):  
Xiaoxia Yang ◽  
Juan Wu ◽  
Jia Liu ◽  
Xuchun Ye

In this study, 11 extreme precipitation indices were selected to examine the spatiotemporal variation of extreme precipitation in the Poyang Lake Basin during 1960–2017. The responses of extreme precipitation indices to El Nino/Southern Oscillation (ENSO) events of different Pacific Ocean areas were further investigated. The results show that the temperature in the Poyang Lake Basin has increased significantly since the 1990s, and the inter-decadal precipitation fluctuated. Most extreme precipitation indices showed an increasing trend with abrupt changes occurring around 1991. Spatially, most of the extreme precipitation indices decreased from northeast to southwest. The increasing trend of most indices in the center and south of the basin was relatively prominent. The linear correlations between the extreme precipitation indices and Nino 1 + 2 were the most significant. On the timescale of 2–6 years, a common oscillation period between the extreme precipitation of the basin and the four ENSO indices can be observed. After 2010, the positive correlation between the precipitation of the Poyang Lake Basin and the SST (sea surface temperature) anomalies in the equatorial Pacific increased significantly. Additionally, annual total wet–day precipitation in most areas of the Poyang Lake Basin increased with varying degrees in warm ENSO years. The results of this study will improve the understanding of the complex background and driving mechanism of flood disasters in the Poyang Lake Basin.


2020 ◽  
Vol 12 (3) ◽  
pp. 944 ◽  
Author(s):  
Ruonan Wang ◽  
Wenqi Peng ◽  
Xiaobo Liu ◽  
Cuiling Jiang ◽  
Wenqiang Wu ◽  
...  

Spatial and temporal variations in hydrological series are affected by both climate change and human activities. A scientific understanding of the impacts of these two main factors on runoff will help to understand the response mechanism of the water cycle in a changing environment. This study focused on Poyang Lake Basin, which contains China’s largest freshwater lake. Several approaches, including the Mann-Kendall trend test, cumulative anomaly method, Hurst exponent analysis, and slope change ratio of cumulative quantity (SCRCQ) method, were adopted to explore the characteristics of runoff variations and the respective impacts of climate change and human activities on runoff variations in the five subbasins. The results indicated that (1) from 1961 to 2015, the runoff throughout the basin fluctuated, and it decreased significantly in the 2000s. (2) Different baseline periods and measurement periods were identified for each subbasin to analyse the spatial and temporal responses of runoff to climate change and human activities. (3) The runoff of each subbasin will exhibit anti-persistent features with different persistence times in the future. (4) Compared with those in the baseline period, in the first measurement period, precipitation was the main factor driving the runoff increase in the Ganjiang, Fuhe, Xinjiang and Raohe subbasins, with contribution rates of 50.91–63.47%, and human activities played a supplementary role. However, in the second measurement period, as human activities intensified, they became the leading factor causing changes in runoff, with contribution rates between 59.57% and 92.49%. Considering water shortages and the intensification of human activities, the impacts of human activities on runoff variations will require more attention in the future.


Sign in / Sign up

Export Citation Format

Share Document