scholarly journals Towards Urban Mining—Estimating the Potential Environmental Benefits by Applying an Alternative Construction Practice. A Case Study from Switzerland

2020 ◽  
Vol 12 (12) ◽  
pp. 5041
Author(s):  
Efstathios Kakkos ◽  
Felix Heisel ◽  
Dirk E. Hebel ◽  
Roland Hischier

Modern cities emerged as the main accumulator for primary and waste materials. Recovery of both types from buildings after demolition/disassembly creates a secondary material stream that could relieve pressure from primary resources. Urban mining represents this circular approach, and its application depends on redefining current construction practice. Through the life cycle assessment (LCA) methodology and assuming primary resources as step zero of urban mining, this study estimates the impacts and benefits of conventional versus a circular construction practice applied to various buildings with different parameters and the country-level environmental potential savings that could be achieved through this switch in construction practice—using the increase of the residential building stock in Switzerland between 2012 and 2016 as a case study and key values from the experimental unit “Urban Mining and Recycling”, designed by Werner Sobek with Dirk E. Hebel and Felix Heisel and installed inside the NEST (Next Evolution in Sustainable Building Technologies) research building on the Empa campus in Switzerland. The results exhibit lower total impacts (at least 16% in each examined impact category) at building level and resulting benefits (i.e., 68–117 kt CO2-Eq) at country level over five years, which can be further reduced/increased respectively by using existing or recycled components, instead of virgin materials.

2020 ◽  
Vol 209 ◽  
pp. 109694 ◽  
Author(s):  
Raquel Figueiredo ◽  
Pedro Nunes ◽  
Marta J. N. Oliveira Panão ◽  
Miguel C. Brito

2020 ◽  
Vol 12 (19) ◽  
pp. 8111
Author(s):  
Ángel Pitarch ◽  
María José Ruá ◽  
Lucía Reig ◽  
Inés Arín

Achieving sustainable urban environments is a challenging goal—especially in existing cities with high percentages of old and obsolete buildings. This work analyzes the contribution of roof refurbishment to sustainability, considering that most roofs are currently underused. Many potential benefits of refurbishment can be achieved, such as the improvement of the energy performance of the buildings and the use of a wasted space for increasing green areas or for social purposes. In order to estimate the degree of the improvement, a vulnerable area in Castellón (east Spain) was selected as a case study. A thorough analysis of the residential building stock was undertaken. Using georeferenced information from the Cadastral Office we classified them according to typology, year of construction and roof type. Some refurbishment solutions were proposed and their applicability to the actual buildings was analyzed under different criteria. The theoretical benefits obtained in the neighborhood such as energy and carbon emissions savings were evaluated, together with the increase of green areas. Moreover, other social uses were suggested for neglected urban spaces in the area. Finally, a more accurate analysis was performed combining different solutions in a specific building, according to its particular characteristics.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6550
Author(s):  
Seongwon Seo ◽  
Greg Foliente

Since existing residential buildings are a significant global contributor to energy consumption and greenhouse gas (GHG) emissions, any serious effort to reduce the actual energy and carbon emissions of the building sector should explicitly address the carbon mitigation challenges and opportunities in the building stock. This research investigates environmentally and economically sustainable retrofit methods to reduce the carbon footprint of existing residential buildings in the City of Greater Dandenong as a case study in Metropolitan Melbourne, Australia. By categorizing energy use into various building age brackets and dwelling types that align with changes in energy regulations, we identified various retrofit prototypes to achieve a targeted 6.5-star and 8-star energy efficiency rating (out of a maximum 10-star rating system). The corresponding operational energy savings through different retrofit options are examined while also considering the quantity of materials required for each option, along with their embodied energy and GHG emissions, thus allowing a more comprehensive lifecycle carbon analysis and exploration of their financial and environmental payback times. Results show that when buildings are upgraded with a combination of insulation and double-glazed windows, the environmental benefits rise faster than the financial benefits over a dwelling’s lifecycle. The size or percentage of a particular dwelling type within the building stock and the remaining lifecycle period are found to be the most important factors influencing the payback periods. Retrofitting the older single detached dwellings shows the greatest potential for lifecycle energy and carbon savings in the case suburb. These findings provide households, industry and governments some guidance on how to contribute most effectively to reduce the carbon footprint of the residential building sector.


2021 ◽  
Vol 13 (8) ◽  
pp. 4099
Author(s):  
Ann-Kristin Mühlbach ◽  
Olaf Mumm ◽  
Ryan Zeringue ◽  
Oskars Redbergs ◽  
Elisabeth Endres ◽  
...  

The METAPOLIS as the polycentric network of urban–rural settlement is undergoing constant transformation and urbanization processes. In particular, the associated imbalance of the shrinkage and growth of different settlement types in relative geographical proximity causes negative effects, such as urban sprawl and the divergence of urban–rural lifestyles with their related resource, land and energy consumption. Implicitly related to these developments, national and global sustainable development goals for the building sector lead to the question of how a region can be assessed without detailed research and surveys to identify critical areas with high potential for sustainable development. In this study, the TOPOI method is used. It classifies settlement units and their interconnections along the urban–rural gradient, in order to quantify and assess the land-uptake and global warming potential driven by residential developments. Applying standard planning parameters in combination with key data from a comprehensive life cycle assessment of the residential building stock, a detailed understanding of different settlement types and their associated resource and energy consumption is achieved.


Sign in / Sign up

Export Citation Format

Share Document