scholarly journals New Market Model with Social and Commercial Tiers for Improved Prosumer Trading in Microgrids

2020 ◽  
Vol 12 (18) ◽  
pp. 7265 ◽  
Author(s):  
Bogdan-Constantin Neagu ◽  
Ovidiu Ivanov ◽  
Gheorghe Grigoras ◽  
Mihai Gavrilas ◽  
Dumitru-Marcel Istrate

In the deregulated electricity markets, trading prices are determined by the offer-demand mechanism, and retail consumers can negotiate tariffs with their supplier of choice. For classic wholesale suppliers, the tariffs are determined by the prices of transactions performed on the wholesale market. In parallel with becoming eligible for participating in the market, the consumers use increasingly local generation sources based mostly on renewable electricity generation equipment such as Photovoltaic (PV) panels, and become prosumers. They want to be able to sell back to the market the generation surplus, in order to obtain the maximum benefits from their initial investment. This paper proposes a two-tier local market model oriented for prosumers and consumers connected in microgrids, based on the blockchain technologies and other technologies and concepts such as smart grids, crowdsourcing and energy poverty. Its goals are to improve the possibilities of local prosumers to sell electricity to local consumers and to increase their profitability, compared to the trading model often used in developing markets, of selling the surplus back to the grid via aggregators. The research aims to contribute to the sustainable development of the electricity sector using new and renewable sources of energy, state-of the art technologies and smart contracts, leading to prosumer proliferation and electricity cost reduction for consumers.

Author(s):  
Bogdan-Constantin Neagu ◽  
Ovidiu Ivanov ◽  
Gheorghe Grigoras ◽  
Mihai Gavrilas ◽  
Dumitru-Marcel Istrate

The deregulated markets have replaced the traditional way of trading electricity from the producers to the consumer, via government-owned organizations and regulated tariffs. Nowadays, electricity prices are determined by the offer-demand mechanism and consumers can negotiate tariffs with their supplier of choice. For classic wholesale suppliers, the tariffs are a result of the transactions performed on the wholesale market and the energy mix available in certain geographical regions. In parallel with becoming eligible and participating in retail electricity markets, the consumers use increasingly local generation sources based mostly on renewable energy technologies such as PV panels, and become prosumers. They want to be able to sell back to the market the generation surplus, in order to obtain the maximum benefits from their initial investment. Currently, several trading mechanisms for prosumers are available, ranging from the simplest, selling back the surplus to an aggregator at fixed tariffs, to more complex market schemes. This paper proposed a two-tier local market model for prosumers and consumers connected in microgrids, based on the blockchain technologies and other technologies and concepts such as remote sensing, smart grids, crowdsourcing and energy poverty.


Author(s):  
Bogdan-Constantin Neagu ◽  
Ovidiu Ivanov ◽  
Gheorghe Grigoras ◽  
Mihai Gavrilas ◽  
Dumitru-Marcel Istrate

The deregulated markets have replaced the traditional way of trading electricity from the producers to the consumer, via government-owned organizations and regulated tariffs. Nowadays, electricity prices are determined by the offer-demand mechanism and consumers can negotiate tariffs with their supplier of choice. For classic wholesale suppliers, the tariffs are a result of the transactions performed on the wholesale market and the energy mix available in certain geographical regions. In parallel with becoming eligible and participating in retail electricity markets, the consumers use increasingly local generation sources based mostly on renewable energy technologies such as PV panels, and become prosumers. They want to be able to sell back to the market the generation surplus, in order to obtain the maximum benefits from their initial investment. Currently, several trading mechanisms for prosumers are available, ranging from the simplest, selling back the surplus to an aggregator at fixed tariffs, to more complex market schemes. This paper proposed a two-tier local market model for prosumers and consumers connected in microgrids, based on the blockchain technologies and other technologies and concepts such as remote sensing, smart grids, crowdsourcing and energy poverty.


Smart Cities ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 1437-1453
Author(s):  
Hugo Algarvio

Over the last few decades, the electricity sector has experienced several changes, resulting in different electricity markets (EMs) models and paradigms. In particular, liberalization has led to the establishment of a wholesale market for electricity generation and a retail market for electricity retailing. In competitive EMs, customers can do the following: freely choose their electricity suppliers; invest in variable renewable energy such as solar photovoltaic; become prosumers; or form local alliances such as Citizen Energy Communities (CECs). Trading of electricity can be done in spot and derivatives markets, or by bilateral contracts. This article focuses on CECs. Specifically, it presents how agent-based local consumers can form alliances as CECs, manage their resources, and trade on EMs. It also presents a review of how agent-based systems can model and support the formation and interaction of alliances in the electricity sector. The CEC can trade electricity directly with sellers through private bilateral agreements. During the negotiation of private bilateral contracts, the CEC receives the prices and volumes of their members and according to its negotiation strategy, tries to satisfy the electricity demands of all members and reduce their costs for electricity.


Author(s):  
Cherrelle Eid ◽  
Rudi Hakvoort ◽  
Martin de Jong

The global transition towards sustainable, secure, and affordable electricity supply is driving changes in the consumption, production, and transportation of electricity. This chapter provides an overview of three main causes of political–economic tensions with smart grids in the United States, Europe, and China, namely industry structure, regulatory models, and the impact of energy policy. In all cases, the developments are motivated by the possible improvements in reliability and affordability yielded by smart grids, while sustainability of the electricity sector is not a central motivation. A holistic smart grid vision would open up possibilities for better integration of distributed energy resources. The authors recommend that smart grid investments should remain outside of the regulatory framework for utilities and distribution service operators in order to allow for such developments.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1815
Author(s):  
Longze Wang ◽  
Yu Xie ◽  
Delong Zhang ◽  
Jinxin Liu ◽  
Siyu Jiang ◽  
...  

Blockchain-based peer-to-peer (P2P) energy trading is one of the most viable solutions to incentivize prosumers in distributed electricity markets. However, P2P energy trading through an open-end blockchain network is not conducive to mutual credit and the privacy protection of stakeholders. Therefore, improving the credibility of P2P energy trading is an urgent problem for distributed electricity markets. In this paper, a novel double-layer energy blockchain network is proposed that stores private trading data separately from publicly available information. This blockchain network is based on optimized cross-chain interoperability technology and fully considers the special attributes of energy trading. Firstly, an optimized ring mapping encryption algorithm is designed to resist malicious nodes. Secondly, a consensus verification subgroup is built according to contract performance, consensus participation and trading enthusiasm. This subgroup verifies the consensus information through the credit-threshold digital signature. Thirdly, an energy trading model is embedded in the blockchain network, featuring dynamic bidding and credit incentives. Finally, the Erenhot distributed electricity market in China is utilized for example analysis, which demonstrates the proposed method could improve the credibility of P2P trading and realize effective supervision.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3747
Author(s):  
Ricardo Faia ◽  
Tiago Pinto ◽  
Zita Vale ◽  
Juan Manuel Corchado

The participation of household prosumers in wholesale electricity markets is very limited, considering the minimum participation limit imposed by most market participation rules. The generation capacity of households has been increasing since the installation of distributed generation from renewable sources in their facilities brings advantages for themselves and the system. Due to the growth of self-consumption, network operators have been putting aside the purchase of electricity from households, and there has been a reduction in the price of these transactions. This paper proposes an innovative model that uses the aggregation of households to reach the minimum limits of electricity volume needed to participate in the wholesale market. In this way, the Aggregator represents the community of households in market sales and purchases. An electricity transactions portfolio optimization model is proposed to enable the Aggregator reaching the decisions on which markets to participate to maximize the market negotiation outcomes, considering the day-ahead market, intra-day market, and retail market. A case study is presented, considering the Iberian wholesale electricity market and the Portuguese retail market. A community of 50 prosumers equipped with photovoltaic generators and individual storage systems is used to carry out the experiments. A cost reduction of 6–11% is achieved when the community of households buys and sells electricity in the wholesale market through the Aggregator.


2020 ◽  
Vol 34 (02) ◽  
pp. 1974-1981
Author(s):  
Susobhan Ghosh ◽  
Sujit Gujar ◽  
Praveen Paruchuri ◽  
Easwar Subramanian ◽  
Sanjay Bhat

Periodic Double Auctions (PDAs) are commonly used in the real world for trading, e.g. in stock markets to determine stock opening prices, and energy markets to trade energy in order to balance net demand in smart grids, involving trillions of dollars in the process. A bidder, participating in such PDAs, has to plan for bids in the current auction as well as for the future auctions, which highlights the necessity of good bidding strategies. In this paper, we perform an equilibrium analysis of single unit single-shot double auctions with a certain clearing price and payment rule, which we refer to as ACPR, and find it intractable to analyze as number of participating agents increase. We further derive the best response for a bidder with complete information in a single-shot double auction with ACPR. Leveraging the theory developed for single-shot double auction and taking the PowerTAC wholesale market PDA as our testbed, we proceed by modeling the PDA of PowerTAC as an MDP. We propose a novel bidding strategy, namely MDPLCPBS. We empirically show that MDPLCPBS follows the equilibrium strategy for double auctions that we previously analyze. In addition, we benchmark our strategy against the baseline and the state-of-the-art bidding strategies for the PowerTAC wholesale market PDAs, and show that MDPLCPBS outperforms most of them consistently.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2946
Author(s):  
Jun Maekawa ◽  
Koji Shimada

Renewable energy sources produce less environmental impact and have little marginal cost. Thus, because of these characteristics, it is desirable to disseminate it for the purpose of economic efficiency. Because of the uncertainty in the supply of renewable energy and the special feature of electricity as a good, such as merit order curve, introducing forward markets is an essential factor in a liberalized market. In European countries, which have already established several mechanisms for managing liquidity including markets with several timelines, the market liquidity invites the investor to perform some speculative action. We present a simple electric power market model to analyze the speculative actions of electricity suppliers and the price effect of such actions. Moreover, we found that the speculative action improves the inelasticity of the demand in electricity market.


2019 ◽  
Vol 75 (1) ◽  
pp. 183-213
Author(s):  
Christian Gambardella ◽  
Michael Pahle ◽  
Wolf-Peter Schill

AbstractWe analyze the gross welfare gains from real-time retail pricing in electricity markets where carbon taxation induces investment in variable renewable technologies. Applying a stylized numerical electricity market model, we find a U-shaped association between carbon taxation and gross welfare gains. The benefits of introducing real-time pricing can accordingly be relatively low at relatively high carbon taxes and vice versa. The non-monotonous change in welfare gains can be explained by corresponding changes in the inefficiency arising from “under-consumption” during low-price periods rather than by changes in wholesale price volatility. Our results may cast doubt on the efficiency of ongoing roll-outs of advanced meters in many electricity markets, since net benefits might only materialize at relatively high carbon tax levels and renewable supply shares.


Sign in / Sign up

Export Citation Format

Share Document