scholarly journals The Influence of Hydrogen on Vaporization, Mixture Formation and Combustion of Diesel Fuel at an Automotive Diesel Engine

2020 ◽  
Vol 13 (1) ◽  
pp. 202
Author(s):  
Alexandru Cernat ◽  
Constantin Pana ◽  
Niculae Negurescu ◽  
Gheorghe Lazaroiu ◽  
Cristian Nutu

Hydrogen can be a viable alternative fuel for modern diesel engines, offering benefits on efficiency and performance improvement. The paper analyses the results of a thermodynamic model developed by authors in order to study the influence of Hydrogen addition on a process like vaporization, mixture forming, and combustion at the level of diesel fuel droplets. The bi-zonal model is applied for a dual-fueled diesel engine K9K type designed by Renault for automotives. For the engine operating regime of 2000 rpm speed and 55% engine load, the diesel fuel is partially substituted by Hydrogen in energetic percents of 6.76%, 13.39%, and 20.97%, the engine power being maintained at the same level comparative to classic fueling. At Hydrogen addition, the diesel fuel jets atomization and diesel fuel droplets vaporization are accelerated, the speed of formation of the mixture being increased. Comparative to classic fueling, the use of Hydrogen leads to diesel droplets combustion intensification, with a shortened autoignition delay, reduction of combustion duration, and increase of flame radius.

Author(s):  
G D Zhang ◽  
H Liu ◽  
X X Xia ◽  
W G Zhang ◽  
J H Fang

The physical and chemical properties of some oxygenated compounds are discussed, including dimethoxymethane (methylal, or DMM), dimethyl carbonate (DMC), and ethyl acetate. In particular, DMC may be a promising additive for diesel fuel owing to its high oxygen content, no carbon-carbon atomic bonds, suitable boiling point, and solubility in diesel fuel. The aim of this research was to study the combustion characteristics and performance of diesel engines operating on diesel fuel mixed with DMC. The experimental results have shown that particulate matter (PM) emissions can be reduced using the DMC oxygenated compound. The combustion analysis indicated that the ignition delay of the engine fuelled with DMC-diesel blended fuel is longer, but combustion duration is much shorter, and the thermal efficiency is increased compared with that of a base diesel engine. Further, if injection is also delayed, NOx emissions can be reduced while PM emissions are still reduced significantly. The experimental study found that diesel engines fuelled with DMC additive had improved combustion and emission performances.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402098840
Author(s):  
Mohammed S Gad ◽  
Sayed M Abdel Razek ◽  
PV Manu ◽  
Simon Jayaraj

Experimental work was done to examine the impact of diesel fuel with alumina nanoparticles on combustion characteristics, emissions and performance of diesel engine. Alumina nanoparticles were mixed with crude diesel in various weight fractions of 20, 30, and 40 mg/L. The engine tests showed that nano alumina addition of 40 ppm to pure diesel led to thermal efficiency enhancement up to 5.5% related to the pure diesel fuel. The average specific fuel consumption decrease about neat diesel fuel was found to be 3.5%, 4.5%, and 5.5% at dosing levels of 20, 30, and 40 ppm, respectively at full load. Emissions of smoke, HC, CO, and NOX were found to get diminished by about 17%, 25%, 30%, and 33%, respectively with 40 ppm nano-additive about diesel operation. The smaller size of nanoparticles produce fuel stability enhancement and prevents the fuel atomization problems and the clogging in fuel injectors. The increase of alumina nanoparticle percentage in diesel fuel produced the increases in cylinder pressure, cylinder temperature, heat release rate but the decreases in ignition delay and combustion duration were shown. The concentration of 40 ppm alumina nanoparticle is recommended for achieving the optimum improvements in the engine’s combustion, performance and emission characteristics.


Fuel ◽  
2014 ◽  
Vol 132 ◽  
pp. 7-11 ◽  
Author(s):  
Gökhan Tüccar ◽  
Erdi Tosun ◽  
Tayfun Özgür ◽  
Kadir Aydın

Author(s):  
Yongcheng Huang ◽  
Yaoting Li ◽  
Kun Luo ◽  
Jiyuan Wang

Although both biodiesel and n-butanol are excellent renewable biofuels, most of the existing research works merely use them as the additives for petroleum diesel. As the main fuel properties of biodiesel and n-butanol are complementary, the biodiesel/ n-butanol blends are promising to be a pure biomass-based substitute for diesel fuel. In this paper, the application of the biodiesel/ n-butanol blends on an agricultural diesel engine was comprehensively investigated, in terms of the combustion, performance, and emission characteristics. First, the biodiesel/ n-butanol blends with 10%, 20%, and 30% n-butanol by weight were prepared and noted as BBu10 (10 wt% n-butanol + 90 wt% biodiesel), BBu20 (20 wt% n-butanol + 80 wt% biodiesel), and BBu30 (30 wt% n-butanol + 70 wt% biodiesel). It was found that adding 30 wt% n-butanol to biodiesel can reduce the viscosity by 39.3% and increase the latent heat of vaporization by 57.3%. Then the engine test results showed that with the addition of n-butanol to biodiesel, the peak values of the cylinder pressure and temperature of the biodiesel/ n-butanol blends were slightly decreased, the peak values of the pressure rise rate and heat release rate of the blends were increased, the fuel ignition was delayed, and the combustion duration was shortened. BBu20 has the approximate ignition characteristics with diesel fuel. Both the brake thermal efficiency and the brake-specific fuel consumption of BBu30 were increased by the average percentages of 2.7% and 14.9%, while NO x, soot, and CO emissions of BBu30 were reduced by the average percentages of 17.6%, 34.1%, and 15.4%, compared to biodiesel. The above variations became more evident as the n-butanol proportion increased.


2014 ◽  
Vol 554 ◽  
pp. 505-509
Author(s):  
Mohd Zaini Jamaludin ◽  
Safaruddin Gazali Herawan ◽  
Mohamed Arifin Yusmady ◽  
Ahmad Fauzi

Nowadays, biodiesel from non-edible feedstock is gaining more concern than edible oil to substitute diesel fuel. The purpose of this study is to investigate the performance of low cost single cylinder diesel engine fuelled by regular diesel and B5 biodiesel of castor and jatropha. The experiments were conducted to identify the performance of a low cost single cylinder diesel engine dynamometer, in terms of engine torque, engine power, and brake specific fuel consumption. It was found that these biodiesel can be used as the alternative fuel based on the performance of engine dynamometer, where the results show nearly similar with regular diesel.


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 543-553 ◽  
Author(s):  
Helin Xiao ◽  
Pengfei Zeng ◽  
Liangrui Zhao ◽  
Zhongzhao Li ◽  
Xiaowei Fu

Experiments were carried out in a direct injection compression ignition engine fueled with diesel-dimethylfuran blends. The combustion and emission performances of diesel-dimethylfuran blends were investigated under various loads ranging from 0.13 to 1.13 MPa brake mean effective pressure, and a constant speed of 1800 rpm. Results indicate that diesel-dimethylfuran blends have different combustion performance and produce longer ignition delay and shorter combustion duration compared with pure diesel. Moreover, a slight increase of brake specific fuel consumption and brake thermal efficiency occurs when a Diesel engine operates with blended fuels, rather than diesel fuel. Diesel-dimethylfuran blends could lead to higher NOx emissions at medium and high engine loads. However, there is a significant reduction in soot emission when engines are fueled with diesel-dimethylfuran blends. Soot emissions under each operating conditions are similar and close to zero except for D40 at 0.13 MPa brake mean effective pressure. The total number and mean geometric diameter of emitted particles from diesel-dimethylfuran blends are lower than pure diesel. The tested fuels exhibit no significant difference in either CO or HC emissions at medium and high engine loads. Nevertheless, diesel fuel produces the lowest CO emission and higher HC emission at low loads of 0.13 to 0.38 MPa brake mean effective pressure.


2021 ◽  
pp. 30-34
Author(s):  

It is established, that the destruction of carbon deposits when the engine is running on a water-fuel emulsion occurs due to the phenomenon of micro-impact of emulsified fuel droplets, the evaporation rate of which depends on their diameter, pressure and amplitude of the gaseous medium. As a result of the removal of carbon deposits in the engines, there is an increase in the average compression value for the engine cylinders by 8 % and the engine power by 11 %, as well as a decrease in the specific fuel consumption by 10 % and the smoke of the exhaust gases by 16 %. Keywords: engine, water-fuel emulsion, micro-impact, emulsified fuel, compression. [email protected]


Sign in / Sign up

Export Citation Format

Share Document