scholarly journals Long-Term Aging of Chernobyl Fuel Debris: Corium and “Lava”

2021 ◽  
Vol 13 (3) ◽  
pp. 1073
Author(s):  
Bella Zubekhina ◽  
Boris Burakov ◽  
Ekaterina Silanteva ◽  
Yuri Petrov ◽  
Vasiliy Yapaskurt ◽  
...  

Samples of Chernobyl fuel debris, including massive corium and “lava” were collected inside the Chernobyl “Sarcophagus” or “Shelter” in 1990, transported to Leningrad (St. Petersburg) and stored under laboratory conditions for many years. In 2011 aged samples were visually re-examined and it was confirmed that most of them remained intact, although some evidence of self-destruction and chemical alteration were clearly observed. Selected samples of corium and “lava” were affected by static leaching at temperatures of 25, 90 and 150 °C in distilled water. A normalized Pu mass loss (NLPu) from corium samples after 140 days was noted to be 0.5 g/m2 at 25 °C and 1.1 g/m2 at 90 °C. For “lava” samples NLPu was 2.2–2.3 g/m2 at 90 °C for 140 days. The formation of secondary uranyl phases on the surface of corium and “lava” samples altered at 150 °C was confirmed. The results obtained are considered as an important basis for the simulation of fuel debris aging at Fukushima Daiichi nuclear power plant (NPP).

Author(s):  
Claire Leppold ◽  
Shuhei Nomura ◽  
Toyoaki Sawano ◽  
Akihiko Ozaki ◽  
Masaharu Tsubokura ◽  
...  

2021 ◽  
Author(s):  
T. Schneider ◽  
J. Lochard ◽  
M. Maître ◽  
N. Ban ◽  
P. Croüail ◽  
...  

Lessons from the Fukushima-Daiichi nuclear power plant accident emphasize the difficulties for restoring the socio-economic activities in the affected areas. Among them, a series of radioligical protection challenges were noted, in particular concerning the protection of employees, the securing of the production and the guarantee provided to consumers of the radiological monitoring of products to restore their confidence. Based on case studies reporting the experience of employers deploying their activities in affected areas, an analysis of these radiological protection challenges has been performed. Characterizing the radiological situation was not always straightforward for the managers. With the help of radiological protection experts, protective actions have been identified and specific efforts have been devoted to provide information to employees and their families helping them to make their own judgement about the radiological situation. Respecting the decisions of employees and developing a radiological protection culture among them have proved to be efficient for restoring the business activities. Continuing or restoring the production not always manageable. It requires to develop dedicated radiological monitoring processes to ensure the radiological protection of workers and the quality of the production. Re-establishing the link with the consumers and organising the vigilance on the long-term were necessary for companies to maintain their production or develop new ones. Deploying a socio-economic programme for ensuring the community resilience in affected areas requires the adoption of governance mechanisms respecting ethical values to ensure the overall objective of protecting people and the environment against the risks of ionizing radiation and contributing to provide decent living and working conditions to the affected communities. It is of primary importance to rely on the involvement of local communities in the elaboration and deployment of the socio-economic activities with due considerations for ensuring the integrity of the communities, and respecting their choices.


2018 ◽  
Vol 59 (3) ◽  
pp. 381-384 ◽  
Author(s):  
Toyoaki Sawano ◽  
Yoshitaka Nishikawa ◽  
Akihiko Ozaki ◽  
Claire Leppold ◽  
Masaharu Tsubokura

Abstract The health threats of radiation-release incidents are diverse and long term. In addition to direct radiation effects, it is imperative to manage the indirect effects of radiation such as stigma, prejudice and broader mental health impacts. Six years after the Fukushima Daiichi Nuclear Power Plant accident of March 2011, bullying caused by stigma and prejudice toward evacuees, including children, has become a social problem in Japan. This phenomenon may be associated with the fact that knowledge about radiation has still not reached the general public, and to a potential lack of motivation among Japanese citizens to learn about radiation and bullying. Continuous and sustained education regarding radiation is warranted in order to enhance the general knowledge level about the effects of radiation in Japan after the Fukushima Daiichi Nuclear Power Plant accident, and this education will become an important reference for education after future nuclear disasters.


2020 ◽  
Vol 220-221 ◽  
pp. 106281 ◽  
Author(s):  
Dajie Sun ◽  
Haruko M. Wainwright ◽  
Carlos A. Oroza ◽  
Akiyuki Seki ◽  
Satoshi Mikami ◽  
...  

2021 ◽  
pp. 014664532110108
Author(s):  
Akira Ono

It has been nearly 10 years since the accident at Fukushima Daiichi nuclear power plant. With the cooperation of those involved, the site, which was once in a crisis situation, has improved to the point where it is possible to look ahead and proceed with work on schedule. In the off-site area, conditions for returning home have been progressed, and evacuation orders for some areas have been lifted by the Japanese Government. This article describes, in respect of the various efforts being made on site at the moment, the current status of fuel removal from the spent fuel pools, preparations for fuel debris retrieval, improvement of the working environment, and future plans. Removal of fuel from the spent fuel pool for Unit 4 was completed in December 2014, and work is continuing with Unit 3 in order to complete by March 2021. The decision was made to install a large cover in advance for Unit 1 in consideration of the risk of dust scattering, and to conduct fuel removal for Unit 2 from the south side without dismantling the existing upper section of the building. The target is for fuel removal from the pools, including Units 5 and 6, to be complete by 2031. Regarding fuel debris retrieval, progress in various investigations has made it possible to grasp the distribution of debris in the reactor containment vessels of Units 1–3 to a certain extent, and it was decided that the first retrieval will start with the most-investigated unit (Unit 2). A robot arm will be used for retrieval; initially, a trial retrieval will be started, and once the retrieval method has been verified and confirmed, the scale of retrieval will be expanded in stages using a device with the same mechanism. The working environment of Fukushima Daiichi nuclear power plant has also improved. By reducing the stirring up of radioactive materials due to facing (paving), etc., it became possible to reduce the degree of protective clothing needed, and the area in which people can work with simple clothing such as general work clothes now represents 96% of the entire site. Due to various reduction measures, the effective dose of workers is currently approximately 0.2–0.4 mSv month−1 on average per person. The work environment will continue to be improved steadily in the future. Finally, I would like to briefly mention the direction of future decommissioning efforts. The decommissioning of Fukushima Daiichi nuclear power plant and contaminated water management are being implemented based on the national Mid-and-Long-Term Roadmap. The latest edition (5th revision) sets out the milestones until 2031, and we are on target to achieve the goals set forth here and the goals set forth in the Nuclear Regulatory Commission's risk map. To that end, the Mid-and-Long-Term Decommissioning Action Plan 2020, which shows the main work processes of the decommissioning, was announced. This will enable us to proceed with decommissioning work more systematically in the future while looking ahead. Local people who sometime are concerned about risk arising from Fukushima Daiichi may grasp the future work plan concretely in relief, and can consider taking part in the decommissioning work. The key lies in how we can contribute to the reconstruction of Fukushima through the decommissioning of Fukushima Daiichi nuclear power plant, and we will continue to take responsibility for decommissioning of the power plant and contaminated water management under the principle of ‘striking a balance of reconstruction and decommissioning’.


Sign in / Sign up

Export Citation Format

Share Document