scholarly journals The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland

2021 ◽  
Vol 13 (3) ◽  
pp. 1480
Author(s):  
Shanshan Liu ◽  
Tianling Qin ◽  
Biqiong Dong ◽  
Xuan Shi ◽  
Zhenyu Lv ◽  
...  

Soil nitrogen in farmland ecosystems is affected by climate, soil physical and chemical properties and planting activities. To clarify the effects of these factors on soil nitrogen in sloping farmland quantitatively, the distribution of soil total nitrogen (TN) content, nitrate nitrogen (NO3-N) content and ammonium nitrogen (NH4-N) content at depth of 0–100 cm on 11 profiles of the Luanhe River Basin were analyzed. Meanwhile, soil physical and chemical properties, climatic factors and NDVI (Normalized Difference Vegetation Index) were used to construct a structural equation which reflected the influence mechanism of environmental factors on soil nitrogen concentration. The results showed that TN and NO3-N content decreased with the increase of soil depth in the Luanhe River Basin, while the variation of NH4-N content with soil depth was not obvious. Soil organic carbon (SOC) content, soil pH, soil area average particle size (SMD) and NDVI6 (NDVI of June) explained variation of TN content by 77.4%. SOC was the most important environmental factor contributing to the variation of TN content. NDVI5 (NDVI of May), annual average precipitation (MAP), soil pH and SOC explained 49.1% variation of NO3-N content. Among all environmental factors, only NDVI8 (NDVI of August) had significant correlation with soil NH4-N content, which explained the change of NH4-N content by 24.2%. The results showed that soil nitrogen content in the sloping farmland ecosystem was mainly affected by natural factors such as soil parent material and climate.

Author(s):  
T. Y. Gebeyaw

The study was conducted at the degraded land soils of the Abuhoy Gara Catchment, which is located in the Gidan District of North Wello Zone, Ethiopia to determine the impact of land use type and soil depth on the distribution of soil physical and chemical properties. Soil samples were collected from representative locations with four replications at two depths, surface (0-15 cm) and subsurface (15-30 cm) of cultivated, grazing and bush land use types. One hundred eighty soil samples were collected from the depths of 0-15 and 15-30 cm each in a radial sampling scheme using an auger. Totally, twelve composite soil samples were collected using flexible grid survey method of 1:30,000 scales. The collected samples were air-dried, homogenized and sieved to pass a 2 mm mesh sieve for the standard physical and chemical analyses. Results showed that the soil physical and chemical properties were significantly affected by the interaction of land uses and soil depths. Silt content decreases while clay content increases across depth from surface to subsurface soils. The lowest pH-H2O was registered at the subsurface soils of the grazing lands, while the highest was recorded at the surface soils of the bush land. The interaction effect of land use by soil depth on the variability of soil organic matter was significantly higher at surface layer of the grazing land and lower at surface layer of cultivated land. Similarly, soil total nitrogen was highest in surface layer of the grazing land, while it was lowest in subsurface layer of the bush land. Exchangeable bases were highest in surface soils of the bush land and lowest in the surface soils of cultivated land. The contents of both exchangeable bases were decreasing with soil depth in all land uses except the bush land. Significant difference in cation exchange capacity contents was observed as highest in surface soil layer of the bush land and lowest in surface soil layer of the cultivated land. From the results of the study, it can be concluded that the interaction of land use with soil depth showed negative effects especially disturbance of soil nutrient status on cultivated land in surface soils. In general, the spatial variability of soil properties indicates the soil conditions were strongly affected by inappropriate land use and soil management practices including soil depth. Therefore, reducing intensity of cultivation, adopting integrated soil fertility management and application of organic fertilizers could maintain the existing soil condition and replenish degraded soil properties.


2020 ◽  
Vol 9 ◽  
pp. 1-10
Author(s):  
Jacob Usman ◽  
J.O. Ogbu ◽  
S.E. Iji ◽  
S. Afatar

The study was carried out in Makurdi, Benue State with the view to characterize some wetlands of Makurdi area and their suitability to rice and sugarcane production. In order to characterize and classify the soil, four pedons were dug at the selected seasonally flooded wetlands. The soils were characterized in terms of their morphological, physical and chemical properties. The soils were generally sandy loam, loamy sands and sandy clay loam. The distribution of clay content increased with soil depth for all pedons. The soils were strongly to moderately acid in reaction (3.47 to 5.61) in H2O. The soils had low (0.2 to 3.77 g/kg) organic carbon. The percentage base saturation ranged from 5 to 75 %. The soils were classified as Vertic Endoaquepts/Vertic Gleysols (Orthoeutric), Aeric Glossaqualfs/Lixic Gleysols (Orthoeutric) and Typic Epiaquults/Ferralic Acrisols (Epidystric). Soil Type B was marginally suitable (S3) for sugarcane. However, all the 4 soil types were moderately suitable (S2) for rice.


2019 ◽  
Vol 66 (1) ◽  
pp. 39-49
Author(s):  
Aderemi A. Alabi ◽  
Johnson O. Aina ◽  
Adebambo O. Adewale ◽  
Abass A. Ajanaku

AbstractWe assessed the effect of different land use types on the physical and chemical properties of soil. We analysed three cases. Nine soil samples were taken at different depths (0–10, 10–20 and 20–30 cm) from three locations, namely, sawmill, dumpsite and market. Analyses were carried out to determine the influences on the physical and chemical properties of the soil. All the land types had considerably high sand contents, with minor silt and clay. Available phosphorus and the exchangeable bases were significantly (p ≤ 0.05) affected by land use and soil depth. Moisture content (p ≤ 0.05) was significantly affected by land use, while bulk density (p ≤ 0.01) was significantly affected by soil depth. Soil organic matter and carbon were also generally low in all three locations. Consequently, ameliorative land management practices have to be adopted to prevent nutrient loss and land degradation.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Sign in / Sign up

Export Citation Format

Share Document