scholarly journals Life Cycle Assessment and Economic Energy Efficiency of a Solar Thermal Installation in a Family House

2021 ◽  
Vol 13 (4) ◽  
pp. 2305
Author(s):  
Jaroslav Košičan ◽  
Miguel Ángel Pardo Picazo ◽  
Silvia Vilčeková ◽  
Danica Košičanová

Designing solar strategies is a powerful step forward to set up an adequate residential house in terms of energy. Many types of research have simulated the energy needs for residential buildings. Designing an improper installation can contribute to a growth in the overall energy expenditure in ensuring thermal comfort. The use of solar thermal processes in Slovakia is on a rise as compared to recent years. This study models twelve solar water heating systems created on the roof of the household. Solar energy techniques are carried out to comply with the demands of heating and domestic hot water. The analysis deals with the most efficient alternative for the arranged solar systems of the building. Considering these installations and the corresponding overall prices of machinery, the best workable alternative is selected. The potential energy performance of auxiliary heating and the energy output of the solar thermal installation are examined. The required amounts of the different energy contributions are modelled and simulated in specific software for a family house in Kosice, Slovakia. We determine the limits of the design for an apartment and analyse which procedure is used to provide the typical average water expenditure and heating need, covering a multi-criteria analysis considering costs, energy, and life cycle analysis of every installation. This approach can support professionals to decide the best scheme considering these criteria, and this method can be satisfactorily applied. In these conditions, converting a conventional gas boiler into a solar thermal system involves monthly economic savings of around EUR 140–250, with payback periods of 2.5–7 years. The energy requirements are fully covered by the solar thermal schemes and the life cycle assessment resulted in reasonable impacts on the environment.

2021 ◽  
Vol 11 (9) ◽  
pp. 3820
Author(s):  
Noelia Llantoy ◽  
Gabriel Zsembinszki ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

With the aim of contributing to achieving the decarbonization of the energy sector, the environmental impact of an innovative system to produce heating and domestic hot water for heating demand-dominated climates is assessed is evaluated. The evaluation is conducted using the life cycle assessment (LCA) methodology and the ReCiPe and IPCC GWP indicators for the manufacturing and operation stages, and comparing the system to a reference one. Results show that the innovative system has a lower overall impact than the reference one. Moreover, a parametric study to evaluate the impact of the refrigerant is carried out, showing that the impact of the overall systems is not affected if the amount of refrigerant or the impact of refrigerant is increased.


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Author(s):  
Silvia Vilčeková ◽  
Katarína Harčárová ◽  
Andrea Moňoková ◽  
Eva Krídlová Burdová

Nowadays, there is an increased trend in the construction of nearly zero energy buildings which can be also characterized as green buildings. Several studies confirm that wooden buildings fulfil these requirements. However, there is no detailed research related to the quality of the indoor environment in new wooden family houses. For this reason, this paper focuses on monitoring of the indoor environmental quality in a selected wooden family house. Short-term measurements are aimed at investigation of physical parameters (air temperature, relative humidity, air velocity and noise) and chemical factors such as concentrations of particulate matters and CO2. At the same time, environmental impacts were also assessed for impact categories such as: global warming potential (GWP), ozone depletion potential (ODP) acidification potential (AP), eutrophication potential (EP), photochemical ozone creation potential (POCP) ex-pressed as kilogram CO2eq, CFC11eq, SO2eq, PO43–eq and kilogram of C2H4eq within “Cradle to Grave” boundary by using the life cycle assessment (LCA) method. The main contribution of this study is demonstration that wooden build-ings have substantial share in the reduction of environmental impacts. So far, results indicate that the design of wooden houses correspond with the increasing demands of occupants in terms of environmental, social and energy performance.


2016 ◽  
Vol 164 ◽  
pp. 944-955 ◽  
Author(s):  
Gabriele Comodi ◽  
Maurizio Bevilacqua ◽  
Flavio Caresana ◽  
Claudia Paciarotti ◽  
Leonardo Pelagalli ◽  
...  

2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1943-1955
Author(s):  
Aleksandar Petrovski ◽  
Jelena Ivanovic-Sekularac ◽  
Nenad Sekularac

The residential sector in Republic of North Macedonia, situated in south-east Europe, is responsible for the consumption of significant amounts of resources and for the production of large amount of emissions and waste. The increased application of wood products can substantially improve these conditions and contribute towards increasing the sustainability in the construction industry and the creation of sustainable homes. The contribution of this paper is the simulation of four different alternatives of residential buildings in the Republic of North Macedonia, evaluated in terms of energy performance and life-cycle assessment for the "cradle to gate" phase. The results of this study revealed that by replacing conventional concrete and masonry constructions with wooden constructions in low-rise family houses, the carbon emissions can be reduced up to 145%. The contribution of this paper is the simulation and analysis of the energy performance by using building performance simulation tools and life-cycle assessment of a residential building and its optimization through several models. The results give significant insight on the influence that the different construction materials have on the environment and buildings performance. Also, the research enables stimulation of the construction industry in utilizing wooden structures and delivering legislation that could increase their use. These actions would provide means for the development of sustainable buildings, neighborhoods and sustainable development of the Republic of North Macedonia.


Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Daniel Satola ◽  
Martin Röck ◽  
Aoife Houlihan-Wiberg ◽  
Arild Gustavsen

Improving the environmental life cycle performance of buildings by focusing on the reduction of greenhouse gas (GHG) emissions along the building life cycle is considered a crucial step in achieving global climate targets. This paper provides a systematic review and analysis of 75 residential case studies in humid subtropical and tropical climates. The study investigates GHG emissions across the building life cycle, i.e., it analyses both embodied and operational GHG emissions. Furthermore, the influence of various parameters, such as building location, typology, construction materials and energy performance, as well as methodological aspects are investigated. Through comparative analysis, the study identifies promising design strategies for reducing life cycle-related GHG emissions of buildings operating in subtropical and tropical climate zones. The results show that life cycle GHG emissions in the analysed studies are mostly dominated by operational emissions and are the highest for energy-intensive multi-family buildings. Buildings following low or net-zero energy performance targets show potential reductions of 50–80% for total life cycle GHG emissions, compared to buildings with conventional energy performance. Implementation of on-site photovoltaic (PV) systems provides the highest reduction potential for both operational and total life cycle GHG emissions, with potential reductions of 92% to 100% and 48% to 66%, respectively. Strategies related to increased use of timber and other bio-based materials present the highest potential for reduction of embodied GHG emissions, with reductions of 9% to 73%.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4146
Author(s):  
Agnieszka Jachura ◽  
Robert Sekret

This paper presents an environmental impact assessment of the entire cycle of existence of the tube-vacuum solar collector prototype. The innovativeness of the solution involved using a phase change material as a heat-storing material, which was placed inside the collector’s tubes-vacuum. The PCM used in this study was paraffin. The system boundaries contained three phases: production, operation (use phase), and disposal. An ecological life cycle assessment was carried out using the SimaPro software. To compare the environmental impact of heat storage, the amount of heat generated for 15 years, starting from the beginning of a solar installation for preparing domestic hot water for a single-family residential building, was considered the functional unit. Assuming comparable production methods for individual elements of the ETC and waste management scenarios, the reduction in harmful effects on the environment by introducing a PCM that stores heat inside the ETC ranges from 17 to 24%. The performed analyses have also shown that the method itself of manufacturing the materials used for the construction of the solar collector and the choice of the scenario of the disposal of waste during decommissioning the solar collector all play an important role in its environmental assessment. With an increase in the application of the advanced technologies of materials manufacturing and an increase in the amount of waste subjected to recycling, the degree of the solar collector’s environmental impact decreased by 82% compared to its standard manufacture and disposal.


Author(s):  
H. Harter ◽  
B. Willenborg ◽  
W. Lang ◽  
T. H. Kolbe

Abstract. Reducing the demand for non-renewable resources and the resulting environmental impact is an objective of sustainable development, to which buildings contribute significantly. In order to realize the goal of reaching a climate-neutral building stock, it must first be analyzed and evaluated in order to develop optimization strategies. The life cycle based consideration and assessment of buildings plays a key role in this process. Approaches and tools already exist for this purpose, but they mainly take the operational energy demand of buildings and not a life cycle based approach into account, especially when assessing technical building services (TBS). Therefore, this paper presents and applies a methodical approach for the life cycle based assessment of the TBS of large residential building stocks, based on semantic 3D city models (CityGML). The methodical approach developed for this purpose describes the procedure for calculating the operational energy demand (already validated) and the heating load of the building, the dimensioning of the TBS components and the calculation of the life cycle assessment. The application of the methodology is illustrated in a case study with over 115,000 residential buildings from Munich, Germany. The study shows that the methodology calculates reliable results and that a significant reduction of the life cycle based energy demand can be achieved by refurbishment measures/scenarios. Nevertheless, the goal of achieving a climate-neutral building stock is a challenge from a life cycle perspective.


2021 ◽  
Author(s):  
Kamyar Tanha

This thesis is focused on the performance of the two SDHW systems of the sustainable Archetype houses in Vaughan, Ontario with daily hot water consumption of 225 litres. The first system consists of a flat plate solar thermal collector in conjunction with a gas boiler and a DWHR. The second SDHW system consists of an evacuated tube collector, an electric tank and a DWHR. The experimental results showed that the DWHRs were capable of an annual heat recovery of 789 kWh. The flat plate and evacuated tube collectors had an annual thermal energy output of 2038 kWh and 1383 kWh. The systems were also modeled in TRNSYS and validated with the experimental results. The simulated results showed that Edmonton has the highest annual energy consumption of 3763.4 kWh and 2852.9 kWh by gas boiler and electric tank and that the solar thermal collectors and DWHRs are most beneficial in Edmonton.


Sign in / Sign up

Export Citation Format

Share Document