scholarly journals Expert Insights on the Impacts of, and Potential for, Agricultural Big Data

2021 ◽  
Vol 13 (5) ◽  
pp. 2521
Author(s):  
Rim Lassoued ◽  
Diego M. Macall ◽  
Stuart J. Smyth ◽  
Peter W.B. Phillips ◽  
Hayley Hesseln

Advanced digital technologies are rapidly permeating agriculture from laboratory to field. Machine-based breeding, robotics and big data technologies have deeply transformed not only production systems but also the way scientific research is conducted. How are digital applications revolutionizing people’s jobs and skills? What are the challenges and opportunities for managing and sharing agricultural big data? This article addresses these and other questions by surveying international experts in plant biotechnology. Results show that digital innovations in the form of decision-support tools are perceived as promising. Most surveyed experts anticipate the deployment of big data analytics and artificial intelligence to boost agricultural productivity. Another key finding is that substantial physical investment, specialized human capital and effective data governance are critical to successful implementation of technological innovations associated with big data.

Author(s):  
Meet Hire ◽  
Mayur Gavande ◽  
Krupit Chovatiya ◽  
Aditya Tekale ◽  
Mr. Pritesh Patel ◽  
...  

Big data analytics offers promise in many business sectors, and health care is looking at big data to provide answers to many age-related issues, particularly dementia and chronic disease management. The purpose of this review was to summarize the challenges faced by big data analytics and the opportunities that big data opens in health care. The top challenges were issues of data structure, security, data standardization, storage and transfers, and managerial skills such as data governance. The top opportunities revealed were quality improvement, population management and health, early detection of disease, data quality, structure, and accessibility, improved decision making, and cost reduction.


2021 ◽  
Author(s):  
R. Salter ◽  
Quyen Dong ◽  
Cody Coleman ◽  
Maria Seale ◽  
Alicia Ruvinsky ◽  
...  

The Engineer Research and Development Center, Information Technology Laboratory’s (ERDC-ITL’s) Big Data Analytics team specializes in the analysis of large-scale datasets with capabilities across four research areas that require vast amounts of data to inform and drive analysis: large-scale data governance, deep learning and machine learning, natural language processing, and automated data labeling. Unfortunately, data transfer between government organizations is a complex and time-consuming process requiring coordination of multiple parties across multiple offices and organizations. Past successes in large-scale data analytics have placed a significant demand on ERDC-ITL researchers, highlighting that few individuals fully understand how to successfully transfer data between government organizations; future project success therefore depends on a small group of individuals to efficiently execute a complicated process. The Big Data Analytics team set out to develop a standardized workflow for the transfer of large-scale datasets to ERDC-ITL, in part to educate peers and future collaborators on the process required to transfer datasets between government organizations. Researchers also aim to increase workflow efficiency while protecting data integrity. This report provides an overview of the created Data Lake Ecosystem Workflow by focusing on the six phases required to efficiently transfer large datasets to supercomputing resources located at ERDC-ITL.


2021 ◽  
Vol 23 (06) ◽  
pp. 1167-1182
Author(s):  
Shreyas Nopany ◽  
◽  
Prof. Manonmani S ◽  

The healthcare industry has become increasingly demanding in recent years. The growing number of patients makes it difficult for doctors and staff to manage their work effectively. In order to achieve their objectives, data analysts collect a large amount of data, analyze it, and use it to derive valuable insights. Data analytics may become a promising solution as healthcare industry demands increase. The paper discusses the challenges of data analytics in the healthcare sector and the benefits of using big data for healthcare analytics. Aside from focusing on the opportunities that big data analytics has in the healthcare sector, the paper will also discuss data governance, strategy formulation, and improvements to IT infrastructure. Implementation techniques include Hadoop, HDFS, MapReduce, and Apache in Big Data Analytics. A Healthcare Management System can be categorized into five divisions, namely, Drug discovery, Disease prevention, diagnosis and treatment, Hospital operations, post-care, requiring comprehensive data management. Big Data analysis support transformation is identified as a required component in future research for the application of Big Data in HealthCare.


Web Services ◽  
2019 ◽  
pp. 1430-1443
Author(s):  
Louise Leenen ◽  
Thomas Meyer

The Governments, military forces and other organisations responsible for cybersecurity deal with vast amounts of data that has to be understood in order to lead to intelligent decision making. Due to the vast amounts of information pertinent to cybersecurity, automation is required for processing and decision making, specifically to present advance warning of possible threats. The ability to detect patterns in vast data sets, and being able to understanding the significance of detected patterns are essential in the cyber defence domain. Big data technologies supported by semantic technologies can improve cybersecurity, and thus cyber defence by providing support for the processing and understanding of the huge amounts of information in the cyber environment. The term big data analytics refers to advanced analytic techniques such as machine learning, predictive analysis, and other intelligent processing techniques applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends and other useful information. Semantic technologies is a knowledge representation paradigm where the meaning of data is encoded separately from the data itself. The use of semantic technologies such as logic-based systems to support decision making is becoming increasingly popular. However, most automated systems are currently based on syntactic rules. These rules are generally not sophisticated enough to deal with the complexity of decisions required to be made. The incorporation of semantic information allows for increased understanding and sophistication in cyber defence systems. This paper argues that both big data analytics and semantic technologies are necessary to provide counter measures against cyber threats. An overview of the use of semantic technologies and big data technologies in cyber defence is provided, and important areas for future research in the combined domains are discussed.


2020 ◽  
pp. 1499-1521
Author(s):  
Sukhpal Singh Gill ◽  
Inderveer Chana ◽  
Rajkumar Buyya

Cloud computing has transpired as a new model for managing and delivering applications as services efficiently. Convergence of cloud computing with technologies such as wireless sensor networking, Internet of Things (IoT) and Big Data analytics offers new applications' of cloud services. This paper proposes a cloud-based autonomic information system for delivering Agriculture-as-a-Service (AaaS) through the use of cloud and big data technologies. The proposed system gathers information from various users through preconfigured devices and IoT sensors and processes it in cloud using big data analytics and provides the required information to users automatically. The performance of the proposed system has been evaluated in Cloud environment and experimental results show that the proposed system offers better service and the Quality of Service (QoS) is also better in terms of QoS parameters.


2018 ◽  
Vol 9 (4) ◽  
pp. 33-51
Author(s):  
Rostom Mennour ◽  
Mohamed Batouche

Big data analytics and deep learning are nowadays two of the most active research areas in computer science. As the data is becoming bigger and bigger, deep learning has a very important role to play in data analytics, and big data technologies will give it huge opportunities for different sectors. Deep learning brings new challenges especially when it comes to large amounts of data, the volume of datasets has to be processed and managed, also data in various applications come in a streaming way and deep learning approaches have to deal with this kind of applications. In this paper, the authors propose two novel approaches for discriminative deep learning, namely LS-DSN, and StreamDSN that are inspired from the deep stacking network algorithm. Two versions of the gradient descent algorithm were used to train the proposed algorithms. The experiment results have shown that the algorithms gave satisfying accuracy results and scale well when the size of data increases. In addition, StreamDSN algorithm have been applied to classify beats of ECG signals and provided good promising results.


atp magazin ◽  
2016 ◽  
Vol 58 (09) ◽  
pp. 62 ◽  
Author(s):  
Martin Atzmueller ◽  
Benjamin Klöpper ◽  
Hassan Al Mawla ◽  
Benjamin Jäschke ◽  
Martin Hollender ◽  
...  

Big data technologies offer new opportunities for analyzing historical data generated by process plants. The development of new types of operator support systems (OSS) which help the plant operators during operations and in dealing with critical situations is one of these possibilities. The project FEE has the objective to develop such support functions based on big data analytics of historical plant data. In this contribution, we share our first insights and lessons learned in the development of big data applications and outline the approaches and tools that we developed in the course of the project.


2019 ◽  
Vol 16 (8) ◽  
pp. 3419-3427
Author(s):  
Shishir K. Shandilya ◽  
S. Sountharrajan ◽  
Smita Shandilya ◽  
E. Suganya

Big Data Technologies are well-accepted in the recent years in bio-medical and genome informatics. They are capable to process gigantic and heterogeneous genome information with good precision and recall. With the quick advancements in computation and storage technologies, the cost of acquiring and processing the genomic data has decreased significantly. The upcoming sequencing platforms will produce vast amount of data, which will imperatively require high-performance systems for on-demand analysis with time-bound efficiency. Recent bio-informatics tools are capable of utilizing the novel features of Hadoop in a more flexible way. In particular, big data technologies such as MapReduce and Hive are able to provide high-speed computational environment for the analysis of petabyte scale datasets. This has attracted the focus of bio-scientists to use the big data applications to automate the entire genome analysis. The proposed framework is designed over MapReduce and Java on extended Hadoop platform to achieve the parallelism of Big Data Analysis. It will assist the bioinformatics community by providing a comprehensive solution for Descriptive, Comparative, Exploratory, Inferential, Predictive and Causal Analysis on Genome data. The proposed framework is user-friendly, fully-customizable, scalable and fit for comprehensive real-time genome analysis from data acquisition till predictive sequence analysis.


Sign in / Sign up

Export Citation Format

Share Document