scholarly journals A Sustainable Approach towards the Retrofit of the Public Housing Building Stock: Energy-Architectural Experimental and Numerical Analysis

2021 ◽  
Vol 13 (5) ◽  
pp. 2881
Author(s):  
Federica Rosso ◽  
Arianna Peduzzi ◽  
Lorenzo Diana ◽  
Stefano Cascone ◽  
Carlo Cecere

Nowadays, energy retrofit interventions on the existing building stock are of paramount importance towards energy consumption and emissions reductions in the construction sector. Such interventions are also crucial in the view of increasing cities resilience with respect to the intensification of frequent extreme weather events, such as cold spells and heatwaves. Indeed, a wide portion of our cities is dated and lacking with respect to performances. These are the motivations behind the proposed sustainable approach, which deals with the environmental perspective, but also with social and economic ones, by proposing the retrofit of the Public Residential Building stock (Edilizia Residenziale Pubblica, ERP). The objective is to improve the energy performance of ERP stock by means of construction materials coming from local km0 agricultural waste and by-products. The research was conducted by means of in field and numerical analyses of the energy performances of a relevant case study building. Different layers of bio-based, recycled construction materials for the envelope were tested with respect to their efficacy in improving the energy performance of a case study building. The results demonstrate that the most performing envelope solutions and their combination are able to reduce up to 36% of the yearly energy consumption for heating.

2021 ◽  
Vol 13 (5) ◽  
pp. 2987
Author(s):  
Raúl Castaño-Rosa ◽  
Roberto Barrella ◽  
Carmen Sánchez-Guevara ◽  
Ricardo Barbosa ◽  
Ioanna Kyprianou ◽  
...  

The intensity and duration of hot weather and the number of extreme weather events, such as heatwaves, are increasing, leading to a growing need for space cooling energy demand. Together with the building stock’s low energy performance, this phenomenon may also increase households’ energy consumption. On the other hand, the low level of ownership of cooling equipment can cause low energy consumption, leading to a lack of indoor thermal comfort and several health-related problems, yet increasing the risk of energy poverty in summer. Understanding future temperature variations and the associated impacts on building cooling demand will allow mitigating future issues related to a warmer climate. In this respect, this paper analyses the effects of change in temperatures in the residential sector cooling demand in 2050 for a case study of nineteen cities across seven countries: Cyprus, Finland, Greece, Israel, Portugal, Slovakia, and Spain, by estimating cooling degree days and hours (CDD and CDH). CDD and CDH are calculated using both fixed and adaptive thermal comfort temperature thresholds for 2020 and 2050, understanding their strengths and weaknesses to assess the effects of warmer temperatures. Results suggest a noticeable average increase in CDD and CDH values, up to double, by using both thresholds for 2050, with a particular interest in northern countries where structural modifications in the building stock and occupants’ behavior should be anticipated. Furthermore, the use of the adaptive thermal comfort threshold shows that the projected temperature increases for 2050 might affect people’s capability to adapt their comfort band (i.e., indoor habitability) as temperatures would be higher than the maximum admissible values for people’s comfort and health.


2015 ◽  
Vol 5 (1) ◽  
pp. 37-46
Author(s):  
Ligia Moga ◽  
I. Moga

Abstract Energy efficient design is a high priority in the national energy strategy of European countries considering the latest requirements of the European Directive on the Energy Performance of Buildings. The residential sector is responsible for a significant quantity of energy consumptions from the total amount of consumptions on a worldwide level. In residential building most of the energy consumptions are given mainly by heating, domestic hot water and lighting. Retrofitting the existing building stock offers great opportunities for reducing global energy consumptions and greenhouse gas emissions. The first part of the paper will address the need of thermal and energy retrofit of existing buildings. The second part will provide an overview on how various variables can influence the energy performance of a building that is placed in all four climatic zones from Romania. The paper is useful for specialist and designers from the construction field in understanding that buildings behave differently from the energy point of view in different climatic regions, even if the building characteristic remain the same.


2021 ◽  
Vol 312 ◽  
pp. 06003
Author(s):  
Franz Bianco Mauthe Degerfeld ◽  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Vincenzo Corrado

The EN ISO 52016-1 standard presents a new simplified dynamic calculation procedure, whose aim is to provide an accurate energy performance assessment without excessively increasing the number of data required. The Italian National Annex to EN ISO 52016-1, currently under development, provides some improvements to the hourly calculation method; despite many works can be found in literature on the hourly model of EN ISO 52016-1, the National Annexes application has not been sufficiently analysed yet. The aim of the present work is to assess the main improvements introduced by the Italian National Annex and to compare the main results, in terms of energy need for space heating and cooling. To this purpose, an existing building representative of the Italian office building stock in Northern Italy was selected as a case study. The energy simulations were carried out considering both continuous and reduced operation of the HVAC systems. The options specified in the Italian National Annex were firstly applied one by one, and then all together. The variation of the energy need compared to the international base procedure is finally quantified. For the premises and the scope above discussed, the present work is intended to enhance the standardisation activity towards the adoption of more accurate and trustable calculation methods of the building energy performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-180
Author(s):  
Katerina Petrushevska

AIM: This research examines the important issue of energy efficient improvements to the existing building stock through building envelope upgrade. To facilitate this, the energy performance characteristics of the existing building stock were identified with a view to establishing an existing building stock type, where building envelope upgrades can contribute to a higher level of energy efficiency improvements. The literature review along with the selected building precedents was used to establish the best current practice for building envelope upgrades.MATERIAL AND METHODS: Established building precedents and identified best practice for building envelope upgrade, a high rise block of flats was identified and used as a case study, with the current and predicted, following building envelope upgrade, energy performance of the building calculated. This has allowed us to identify the possible energy efficiency improvements for this type of building following the building envelope upgrade. RESULTS: In the projected case, the building with energy class - "D" become class "B". In addition, increased quality of the living room in the attic was enabled. It was possible to obtain a decrease of the heating energy from 130.76 kWh/m²a to 37.73 kWh/m²a or to jump in the class "B" of energetic passport.CONCLUSION: This research contributes to the local implementation of the global agenda for sustainable development, design and construction, and it demonstrates the possible way and level of energy efficiency improvements to the least efficient building stock through existing building envelope upgrade.


2021 ◽  
Vol 11 (1) ◽  
pp. 433
Author(s):  
Francisco José Sánchez de la Flor ◽  
Enrique Ángel Rodríguez Jara ◽  
Álvaro Ruiz Pardo ◽  
José Manuel Salmerón Lissén ◽  
Maria Kolokotroni

Buildings are known to be responsible for about a third of energy consumption in developed countries. This situation, together with the fact that the existing building stock is being renovated at a very slow pace, makes it crucial to focus on the energy retrofitting of buildings as the only way to reduce their contribution to these energy consumptions and the consequences derived from them in terms of pollution and climate change. The same level of insulation and the same type of windows is usually proposed for all dwellings in a building block. This article shows that since the improvements required by each dwelling in the same block are different, the proposed solution must also be different. The methodology is proposed for a practical case consisting of an apartment block in Cádiz, a demonstration building of the European RECO2ST project. To achieve the optimum solution for each case, a multi-objective optimization problem is solved: to minimize the annual heating demand of the building and the standard deviation of the annual demand of the different dwellings. Thanks to the use of the proposed methodology, it is possible to bring the building to a Nearly Zero Energy Building (NZEB) level, while avoiding excessive insulation that causes overheating in summer.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2489 ◽  
Author(s):  
Jitka Mohelníková ◽  
Miloslav Novotný ◽  
Pavla Mocová

Existing building stock represents potential for energy saving renovations. Energy savings and indoor climate comfort are key demands for sustainable building refurbishment. Especially in schools, indoor comfort is an extremely important issue. A case study of energy consumption in selected school buildings in temperate climatic conditions of Central Europe region was performed. The studied buildings are representatives of various school premises constructed throughout the last century. The evaluation was based on data analysis of energy audits. The goal was aimed at assessment of the school building envelopes and their influence on energy consumption. One of the studied schools was selected for detailed evaluation. The school classroom was monitored for indoor thermal and visual environments. The monitoring was performed to compare the current state and renovation scenarios. Results of the evaluation show that the school buildings are highly inefficient even if renovated. Indoor climate in classrooms is largely influenced by windows. Solar gains affect interior thermal stability and daylighting. Thermal insulation quality of building envelopes and efficient solar shading systems appear to be fundamental tasks of school renovation strategies.


Author(s):  
Paulo Mendonça ◽  
◽  
Monica Macieira ◽  
João Miranda Guedes

This research aims evaluating in what measure the proposed refurbishment solutions with architectural membranes can benefit an existing building and provide an energy efficient alternative to conventional reference building technologies for vertical extensions. In order to do it, an old building from the 19th century, located in Porto (Portugal) is taken as case study. Both solutions are compared regarding thermal comfort, energy consumption for heating/cooling needs using numerical simulation, which allowed evaluating the project from the environmental point of view, based on the energy consumption. The proposed membrane alternatives include conventional and non-conventional thermal/acoustic insulation and a membrane envelope option with vegetation on its external skin. The paper argues that architectural membrane refurbishment solutions can constitute an energy efficient alternative to lightweight conventional ones.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Thanh Truc Le Gia ◽  
Hoang-Anh Dang ◽  
Van-Binh Dinh ◽  
Minh Quan Tong ◽  
Trung Kien Nguyen ◽  
...  

PurposeIn many countries, innovation in building design for improving energy performance, reducing CO2 emissions and minimizing life cycle cost has received much attention for sustainable development. This paper investigates the importance of optimization tools for enhancing the design performance in the early stages of Vietnam's cooling-dominated buildings in hot and humid climates using an integrated building design approach.Design/methodology/approachThe methodology of this study exploits the non-dominated sorting genetic algorithm (NSGA-II) optimization algorithm coupled with building simulation to research a trade-off between the optimization of investment cost and energy consumption. Our approach focuses on the whole optimization problem of thermal envelope, glazing and energy systems from preliminary design phases. The methodology is then tested for a case study of a non-residential building located in Hanoi.FindingsThe results show a considerable improvement in design performance by our method compared to current building design. The optimal solutions present the trade-off between energy consumption and capital cost in the form of a Pareto front. This helps architects, engineers and investors make important decisions in the early design stages with a large view of impacts of all factors on energy performance and cost.Originality/valueThis is one of the original research to study integrated building design applying the simulation-based genetic optimization algorithm for cooling-dominated buildings in Vietnam. The case study in this article is for a non-residential building in the north of Vietnam but the methodology can also be applied to residential buildings and other regions.


2019 ◽  
Vol 18 (1) ◽  
pp. 270-292
Author(s):  
John Dadzie ◽  
Goran Runeson ◽  
Grace Ding

Purpose Estimates show that close to 90% of the buildings we will need in 2050 are already built and occupied. The increase in the existing building stock has affected energy consumption thereby negatively impacting the environment. The purpose of this paper is to assess determinants of sustainable upgrade of existing buildings through the adoption and application of sustainable technologies. The study also ranks sustainable technologies adopted by the professionals who participated in the survey with an in-built case study. Design/methodology/approach As part of the overall methodology, a detailed literature review on the nature and characteristics of sustainable upgrade and the sustainable technologies adopted was undertaken. A survey questionnaire with an in-built case study was designed to examine all the sustainable technologies adopted to improve energy consumption in Australia. The survey was administered to sustainability consultants, architects, quantity surveyors, facility managers and engineers in Australia. Findings The results show a total of 24 technologies which are mostly adopted to improve energy consumption in existing buildings. A factor analysis shows the main components as: lighting and automation, heating, ventilation and air conditioning (HAVC) systems and equipment, envelope, renewable energy and passive technologies. Originality/value The findings bridge the gap in the literature on the adoption and application of sustainable technologies to upgrade existing buildings. The technologies can be adopted to reduce the excessive energy consumption patterns in existing buildings.


Author(s):  
Khuram Pervez Amber ◽  
Muhammad Waqar Aslam ◽  
Anila Kousar ◽  
Muhammad Sajid Khan ◽  
Ghulam Qadir Chaudhary ◽  
...  

Abstract Energy usage intensity (EUI, kWh/m2/year) of a building category helps energy managers and building owners in evaluating the energy performance of their buildings. Banks are energy-intensive buildings, but there is limited research published in this highly energy-intensive building category. In this paper, the energy consumption of 98 bank buildings located in different cities of the AJK region of Pakistan has been critically analyzed and their EUI value has been established. Data were collected through site visits, interviews, and questionnaires. Electricity consumption of each bank branch was normalized using the cooling degree days method and respective annual normalized EUIs were calculated. It was found through analysis that three major factors that drive electricity consumption in bank buildings in Pakistan are building's area, the number of workstations, and the number of automatic teller machines. The EUI of banks in Pakistan has been found to be 222 kWh/m2/yr, which is comparable with the same of eight other countries.


Sign in / Sign up

Export Citation Format

Share Document