scholarly journals Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification

2021 ◽  
Vol 13 (6) ◽  
pp. 3312
Author(s):  
Marco Puglia ◽  
Nicolò Morselli ◽  
Simone Pedrazzi ◽  
Paolo Tartarini ◽  
Giulio Allesina ◽  
...  

Climate change, environmental degradation, and biodiversity loss are prompting production systems to shift from a fossil-based economy to a circular bio-based one. In this context, biomass gasification is a promising alternative to fossil fuels that can contribute to power generation in rural communities and remote areas as well as provide a sustainable source of energy for developed countries. In this work, exhaust gas emissions (CO, NOx, and SO2) of two syngas-fueled micro-scale generators were measured. The first system is a commercial biomass gasifier genset, whereas the second is composed of a laboratory-scale gasifier prototype and a portable petrol generator. For this second facility, emissions were measured both running on gasoline and on syngas. The comparison was performed both on the pollutant concentration and on their cumulative amount. This comparison was made possible by calculating the exhaust gas flow by knowing the combustion stoichiometry and fuel consumption. The results showed a much lower pollutant concentration running on syngas compared to gasoline. In particular, considering the best configurations, every cubic meter of exhaust gas released running on syngas contains about 20 times less CO and almost one-third less NOx compared to gasoline. Moreover, the cumulative amount of emissions released was also considerably lower due to the lower exhaust gas flow (about 25%) released running on syngas.

2014 ◽  
Vol 554 ◽  
pp. 474-478
Author(s):  
Mas Fawzi ◽  
Mohd Norfaiz Hashim ◽  
Fathul Hakim Zulkifli ◽  
Shahrin Hisham Amirnordin

Governmental policies on renewable energy and environmental act are aggressively being enforced to mitigate recent climate change. Natural gas is not renewable but it is the most abundant and has the lowest Lifecycle CO2emission among fossil fuel. Realizing such promising alternative, many logistics and transportation companies are converting their existing diesel-fueled vehicle to CNG-fueled. Researchers have shown that CNG engines offer advantages compared to diesel and gasoline engines such as high efficiency and low emissions. Prior to this work, a 4.3L 4-cylinder diesel engine was modified and retrofitted with a CNG mono gas system. However, it was observed that the engine, CNG-fueled combustion is not stable especially at idling speed. The purpose of this study is to optimize the ignition timing best suited for idling both in normal operating mode (700-850 rpm) and in cold start mode (1000-2000 rpm). The ignition timings tested were 20oBTDC and 25oBTDC. The measurements were made at engine speeds from 700 to 2500 rpm. Some irregularities were found in the result, but overall, the ignition timing 25oBTDC is better than 20oBTDC in terms of fuel consumption and exhaust gas emissions. For this particular system, the results recommend that the idling engine speed should be at 700-800 RPM and 1500 RPM during the normal mode and cold start mode respectively. The use of engine speed of 1000 to 1300 rpm should be minimized to reduce overall exhaust gas emissions.


Author(s):  
T. O. Monz ◽  
M. Stöhr ◽  
W. O’Loughlin ◽  
J. Zanger ◽  
M. Hohloch ◽  
...  

A swirl stabilized MGT combustor (Turbec T100) was operated with natural gas and was experimentally characterized in two test rigs, a pressurized and optically accessible MGT test rig and an atmospheric combustor test rig. For the detailed characterization of the combustion processes, planar OH-PLIF and simultaneous 3D-stereo PIV measurements were performed in the atmospheric combustor test rig. Flow fields, reaction zones and exhaust gas emissions are reported for a range of pressure scaled MGT load points. Parameter studies on combustor inlet conditions (e.g. air preheating temperature, air and fuel mass flow rates and fuel split) were conducted in the atmospheric combustor test rig. From the parameters studies the fuel split between the pilot and the main stage and the air preheating temperature were found to have the biggest impact on the flame shape, flame stabilization and exhaust gas emissions. The measurements of the ATM test rig are compared with measurements of the pressurized MGT test rig with and without an optically accessible combustion chamber. Opened and closed conical flame and flow pattern were found in both test rigs. Reasons for the two flame and flow pattern are supposed to be the interaction of pilot stage combustion and flow field and the interaction of the dilution air with the combustion and the flow field. The results are discussed and compared with repect to a transferability of combustion characteristics from the ATM test rig to the MGT test rigs.


2016 ◽  
Author(s):  
Kristin Götz ◽  
Barbara Fey ◽  
Anja Singer ◽  
Juergen Krahl ◽  
Jürgen Bünger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document