scholarly journals Integrated Evaluation of Changing Water Resources in an Active Ecotourism Area: The Case of Puerto Princesa City, Palawan, Philippines

2021 ◽  
Vol 13 (9) ◽  
pp. 4826
Author(s):  
Mark Ace Dela Cruz ◽  
Shinichiro Nakamura ◽  
Naota Hanasaki ◽  
Julien Boulange

Rapid urbanization, tourism, and climate change (CC) threaten water resource management in developing countries. Conventional water-planning tools cannot account for the changing effects of water disparity, climate risks, and environmental flow (EF) requirements. This paper proposes an alternative approach that applies stylized water-demand forecasting and predicting water availability from the perspectives of CC, changing society, and EF, thereby providing managers with future scenarios of surface water sufficiency/deficiency in an active ecotourism area, namely, Puerto Princesa City, Philippines. We considered (1) scenarios of seasonal droughts to prepare for climate risks in the future and (2) scenarios of water availability that do not depend on groundwater supply, in which the projected water deficiency is frequent both annually and seasonally. The results of this case study showed that an additional water supply from the Montible Watershed to the city was projected to secure sufficient amounts of water to achieve surface-water sufficiency, which is consistent with the goals of both the municipality and the water company to reduce the dependency on groundwater. Moreover, significant infrastructure investment costs must be anticipated in Scenario 3. Our approach proves efficient in modeling water demand in regions with active tourism and hydrology and therefore has the potential for further analyses and application.

2019 ◽  
Vol 5 (4) ◽  
pp. 1859-1875 ◽  
Author(s):  
Alemu Ademe Bekele ◽  
Santosh Murlidhar Pingale ◽  
Samuel Dagalo Hatiye ◽  
Alemayehu Kasaye Tilahun

2008 ◽  
Vol 12 (1) ◽  
pp. 91-100 ◽  
Author(s):  
D. Vanham ◽  
E. Fleischhacker ◽  
W. Rauch

Abstract. Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.


Agromet ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 89
Author(s):  
I Putu Santikayasa ◽  
. Agis ◽  
Siti Maesaroh

<p>The use of economic approach on water allocation are inclusively becoming integrated on water resource management. Competing among water users is expected to escalate due to increasing water demand despite of limited water availability. This research used economic approach aiming to optimize water allocation in Ambang-Brantas subbasin, Malang, and to calculate the total benefit for different sectors of allocated water. We distinguished two scenarios (2012–2015 and 2016–2035) to reflect the existing and the future water allocation. We modelled the water allocation with the Aquarious application. In this subbasin, three main sectors of water users were identified i.e. domestic, agriculture, and industries. The results showed that the agricultural sector was the highest water demand compared to other sectors. This finding was consistent both monthly and annually. Our findings revealed that industries sector show the maximum benefit per unit water used. Based on the scenario, either a decreasing water availability by 10% or an increasing water demand by 10% will decline the total benefit by 44%. If we increase the scenario to 20% it will reduce the total benefit until 71%. This modelling exercise using Aquarius application shows that the model is a promising tool for water resource management with integration of economic approach.</p>


SIMULATION ◽  
2021 ◽  
pp. 003754972098425
Author(s):  
Arfa Saleem ◽  
Imran Mahmood ◽  
Hessam Sarjoughian ◽  
Hasan Arshad Nasir ◽  
Asad Waqar Malik

Increased usage and non-efficient management of limited resources has created the risk of water resource scarcity. Due to climate change, urbanization, and lack of effective water resource management, countries like Pakistan are facing difficulties coping with the increasing water demand. Rapid urbanization and non-resilient infrastructures are the key barriers in sustainable urban water resource management. Therefore, there is an urgent need to address the challenges of urban water management through effective means. We propose a workflow for the modeling and simulation of sustainable urban water resource management and develop an integrated framework for the evaluation and planning of water resources in a typical urban setting. The proposed framework uses the Water Evaluation and Planning system to evaluate current and future water demand and the supply gap. Our simulation scenarios demonstrate that the demand–supply gap can effectively be dealt with by dynamic resource allocation, in the presence of assumptions, for example, those related to population and demand variation with the change of weather, and thus work as a tool for informed decisions for supply management. In the first scenario, 23% yearly water demand is reduced, while in the second scenario, no unmet demand is observed due to the 21% increase in supply delivered. Similarly, the overall demand is fulfilled through 23% decrease in water demand using water conservation. Demand-side management not only reduces the water usage in demand sites but also helps to save money, and preserve the environment. Our framework coupled with a visualization dashboard deployed in the water resource management department of a metropolitan area can assist in water planning and effective governance.


2016 ◽  
Vol 1 (1) ◽  
pp. 1002-1008
Author(s):  
Arini Putri ◽  
Susi Chairani ◽  
Ichwana Ichwana

Pengetahuan mengenai ketersediaan air dan kebutuhan air sangat penting untuk mengetahui keseimbangan air. Perhitungan neraca air permukaan dilakukan untuk mengetahui kemampuan ketersediaan air permukaan pada Sub DAS Krueng Khee untuk memenuhi kebutuhan air domestik dan irigasi. Data klimatologi dan sosial pada tahun 2014 yang digunakan pada penelitian. Berdasarkan penelitian ini diketahui potensi air permukaan Sub DAS Krueng Khee berasal dari air sungai dan curah hujan efektif. Jumlah potensi air dari air sungai pada tahun 2014 adalah 16.891.372,8/tahun. Ketersediaan air yang berasal dari curah hujan efektif digunakan untuk memenuhi kebutuhan kebutuhan air irigasi. Kebutuhan air yang terdapat di Sub DAS Krueng Khee meliputi: kebutuhan air domestik, irigasi, peternakan, dan industri. Analisis neraca air permukaan dilaksanakan dengan mengurangkan input air permukaan dengan output air pada daerah penelitian. Keseimbangan air permukaan (surface water balance) yang dicapai untuk memenuhi kebutuhan air di Sub DAS Krueng Khee pada tahun 2014 adalah: Perubahan simpanan air permukaan ( maksimum yaitu 4.279.181,10 /bulan pada bulan Januari (surplus), rata-rata yaitu 1.255.403,945 /bulan dan minimum yaitu 383.486,90/bulan pada bulan Oktober. Sepanjang tahun 2014 tidak terjadi kekurangan ketersediaan air untuk memenuhi kebutuhan air total Sub DAS Krueng Khee.Knowledge about water availability and water demand is significant to water balance awareness. Accounting surface water balance is to find out capability of surface water availability in Sub Watershed Krueng Khee in order to fulfill domestic and irigation water demand. Chilmatology and social data in year 2014 were used in this research. Based on the result the source of surface water potential in Sub Watershed Krueng Khee source are river water and effective rainfall. The amount of water potential from the river in year 2014 was 16.891.372,8/year. The water availability from effective ranfall used to fulfill irigation. Water demand in Sub wathershed Krueng Khee divers from domestic water demand, irigation, livestock and industry. Surface water balance analysis perfomed by subtracting input surface water with the water output in the research area. Surface water balance achieved to fulfill water demand in Sub Watershed Krueng Khee in 2014: surface water storage ( maximum was 4.279.181,10 /month in January (surplus), average was 1.255.403,945 / month and minimum was 383.486,90/month in October. Throughout the year 2014 there was no shortage of water availability to fulfill the water demand in Sub Wathershed Krueng Khee


2021 ◽  
Vol 35 (1) ◽  
pp. 84
Author(s):  
Chafda Larasati ◽  
Aji Wijaya Abadi ◽  
M Galih Prakoso ◽  
Novanna Dwi S ◽  
Venny Vivid F ◽  
...  

Abstrak Sumberdaya air penting untuk pemenuhan kebutuhan semua makhluk hidup termasuk manusia. DAS Bodri menyediakan suplai air permukaan melalui sungai-sungai yang ada dalam DAS, yang dapat dimanfaatkan oleh penduduk sekitar. Seiring berjalannya waktu, DAS Bodri mengalami perubahan penggunaan lahan yang menyebabkan terjadinya peningkatan kebutuhan air dan terjadi ketidakseimbangan antara kebutuhan dan ketersediaan air permukaan. Tujuan dari penelitian ini, yaitu mengetahui keseimbangan antara kebutuhan air di masa yang akan datang dengan ketersediaan air permukaan di DAS Bodri tahun 2040. Perhitungan keseimbangan antara kebutuhan dan ketersediaan air permukaan dilakukan dengan membandingkan antara kebutuhan air total dan ketersediaan air permukaan. Parameter kebutuhan air total terdiri dari kebutuhan air domestik, fasilitas kesehatan, fasilitas pendidikan, fasilitas peribadatan, perkantoran, industri, pertokoan dan pasar, warung makan, peternakan, irigasi, dan tambak. Kebutuhan air di tahun mendatang diketahui melalui proyeksi secara eksponensial dan tetap dari data jumlah dalam perhitungan parameter. Kebutuhan air untuk aktivitas domestik dan nondomestik diestimasikan mencapai 2,44 miliar m3 pada tahun 2040. Hasil analisis neraca air menunjukkan bahwa status neraca air DAS Bodri tahun 2010-2019 mengalami defisiensi. Hal tersebut menunjukkan bahwa potensi sumberdaya air permukaan masih belum mencukupi untuk pemenuhan kebutuhan air di DAS Bodri hingga tahun 2040. Abstract Water resources play an important role in meeting the needs of all living things, including humans. The Bodri watershed provides surface water supply through rivers on the watershed, which the local residents can use and utilize. Over time, the Bodri watershed underwent landuse change, which led to an increase in water demand, resulting in an imbalance between water demand and surface water availability. Calculation of the balance between demand and surface water availability is done by comparing the total water demand and the surface water availability. This study aims to determine the balance between future water demand and surface water availability in the Bodri watershed in 2040. The parameters used to determine total water demand consist of water needs of the following sectors; domestic, health facilities, educational facilities, religious facilities, offices, industry, shops and markets, food stalls, livestock, irrigation, and ponds. In the coming year, water demand is known through projections exponentially and permanently from the amount of data in the calculation of parameters. Water demand for domestic and non-domestic activities is estimated to reach 2.44 billion m3 in 2040. The water balance analysis results show that the status of the Bodri watershed water balance in 2010-2019 is deficient. The potential for surface water resources is still insufficient to meet the water needs in the Bodri watershed until 2040.  


Author(s):  
Danielle C. M. Ristow ◽  
Elisa Henning ◽  
Andreza Kalbusch ◽  
Cesar E. Petersen

Abstract Technology has been increasingly applied in search for excellence in water resource management. Tools such as demand-forecasting models provide information for utility companies to make operational, tactical and strategic decisions. Also, the performance of water distribution systems can be improved by anticipating consumption values. This work aimed to develop models to conduct monthly urban water demand forecasts by analyzing time series, and adjusting and testing forecast models by consumption category, which can be applied to any location. Open language R was used, with automatic procedures for selection, adjustment, model quality assessment and forecasts. The case study was conducted in the city of Joinville, with water consumption forecasts for the first semester of 2018. The results showed that the seasonal ARIMA method proved to be more adequate to predict water consumption in four out of five categories, with mean absolute percentage errors varying from 1.19 to 15.74%. In addition, a web application to conduct water consumption forecasts was developed.


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Behailu Birhanu ◽  
Seifu Kebede ◽  
Marco Masetti ◽  
Tenalem Ayenew

The integration between WEAP and MODFLOW models coupled via LinkKitchen helps to create a dynamic link between surface water and groundwater supply sources of Addis Ababa city. Possible impacts of natural and anthropogenic stresses on surface water reservoirs volume and groundwater storage have been assessed through water supply scenario analysis. Besides, contrary to other surface water hydrological models, the unique nature of WEAP adds water demand assessment by simulating Addis Ababa city near future water demand coverage under three population projection scenarios. The water demand projections of Addis Ababa city indicates 100% water demand coverage will not be achieved for high (4.6%), medium (3.8%) and low (2.8%) population growth rate projections, even with all the emerging and planned water supply projects start production up until 2025. Supply scenario projections indicate, as surface water reservoirs are highly sensitive to climate change and variability, the city groundwater supply sources will be noticeably affected by the emerging and planned groundwater supply expansion schemes. If groundwater abstraction continues to reach to zero unmet demand, more than 30-meter groundwater level decline can be registered in 2025. To foresee the combined effect of both natural and anthropogenic stresses on Addis Ababa city water supply sources, best case (considering conditions which improve Addis Ababa city water supply) and worst case (considering conditions stressing Addis Ababa city water supply) scenarios were tested. The best case scenario results zero unmet water demand in Addis Ababa city in most wet months of future projection years up to 2025, with likely decline of about 6 meter on the groundwater level. The worst case scenario to the contrary shows, Addis Ababa city water demand coverage will potentially be reduced to a maximum of 35% in 2025, with seasonal and annual variability. The dynamic link between surface water reservoirs and groundwater supply sources helps to gain insight into the potential consequences of continuously changing natural and anthropogenic conditions on Addis Ababa city water supply sources. Consequently, the significant predicted near future pressure on Addis Ababa city surface water and groundwater supply clearly indicate planning and developing alternative water supply sources outside of the boundary (Upper Awash basin) where the city is located should be immediately started in order to endure the pressure from the ever increasing demand. Otherwise, not only Addis will continue suffering unmet water demand for the years to come, but also the water supply sources will be severely impacted. Nonetheless, wherever the water supply sources, minimizing water loss, recycling and improving water use efficiency should be given at most priority.


Author(s):  
Salvi Novita ◽  
Manyuk Fauzi ◽  
Imam Suprayogi

ABSTRAK Perkembangan wilayah pada suatu daerah akan menyebabkan kebutuhan air terus meningkat seiring dengan laju pertumbuhan penduduk. Kecenderungan yang sering terjadi adalah adanya ketidakseimbangan antara ketersediaan dan kebutuhan air. Untuk mencapai keseimbangan antara kebutuhan air dan ketersediaan air di masa mendatang, diperlukan upaya pengkajian komponen komponen kebutuhan air, serta efisiensi penggunaan air. Ketersediaan air terbesar untuk probabilitas 80% untuk DAS Kampar adalah pada bulan Januari dengan nilai sebesar 371,96 m3/detik dan untuk DAS Siak adalah pada bulan Desember dengan nilai sebesar 18,06  m3/detik sedangkan ketersediaan air terkecil untuk probabilitas 80% untuk DAS Kampar adalah pada bulan Agustus dengan nilai sebesar 120,19 m3/detik dan untuk DAS Siak adalah pada bulan Juli dengan nilai sebesar 5,16  m3/detik. Kebutuhan air pada  Kabupaten Kampar yaitu antara lain kebutuhan air irigasi 22.391.782 m3 pada tahun 2017 dan 22.388.055  m3 pada tahun 2037; kebutuhan air penduduk 3.889.618 m3 pada tahun 2017 dan 6.460.267 m3 pada tahun 2037, kebutuhan air perkotaan 162.869 m3 pada tahun 2017 dan 2.250.117 m3 pada tahun 2037, kebutuhan air industri 3.690.267  m3 pada tahun 2017 dan 6.696.326 m3 pada tahun 2037, kebutuhan air peternakan 134.948 m3 pada tahun 2017 dan 631.511 m3 pada tahun 2037, kebutuhan air perikanan 35.925.023 m3 pada tahun 2017 dan 44.776.333 m3 pada tahun 2037 dan kebutuhan air perkebunan 148.253.099 m3 pada tahun 2017 dan 188.219.394 m3 pada tahun 2037. Dari hasil perhitungan didapat daerah layanan yang mengalami defisit air pada 20 tahun mendatang adalah Kecamatan Tapung Hilir dan Kecamatan Kampar. Kebutuhan air yang mendominasi penggunaan air permukaan di Kabupaten Kampar  adalah kebutuhan air irigasi dan perkebunan.    ABSTRACT The  development  of  the  territory  in  an  area  will  cause  the  water  demand increased continually, lined with population growth. The tendency that often go with it, is that the imbalance between availability and demand of water. To achieve a balance of water demand and water availability in the future, studying and surveying the components of water demand and water use efficiency are needed. The largest water availability for a probability of 80% for the Kampar watershed is in January with a value of 371.96 m3 / second and for the Siak watershed is in December with a value of 18.06 m3 / second while the smallest water availability is for a probability of 80% for the watershed. Kampar is in August with a value of 120.19 m3 / second and for the Siak River Basin is in July with a value of 5.16 m3 / second. Water demand in Kampar Regency include, among others, Total irrigation water requirements for 22,391,782 m3 in 2017 and 22,388,055 m3 in 2037; domestic water needs 3,889,618 m3 in 2017 and 6,460,267 m3 in 2037, non domestic water needs (1,162,869 m3 in 2017 and 2,250,117 m3 in 2037, industrial water needs 3,690. 267 m3 in 2017 and 6,696,326 m3 in 2037, livestock water needs 134,948 m3 in 2017 and 631,511 m3 in 2037, fishery water needs 35,925,023 m3 in 2017 and 44,776,333 m3 in 2037 and water needs plantation 148,253,099 m3 in 2017 and 188,219,394 m3 in 2037. From the calculation, it is found that service areas that will experience a water deficit in the next 20 years are Tapung Hilir and Kampar Districts. The need for water that dominates the use of surface water in Kampar Regency is the need for irrigation and plantation water.


Sign in / Sign up

Export Citation Format

Share Document