scholarly journals Spatial Distribution and Sustainability Implications of the Canadian Groundwater Resources under Changing Climate

2021 ◽  
Vol 13 (17) ◽  
pp. 9778
Author(s):  
Ahmad Zeeshan Bhatti ◽  
Aitazaz Ahsan Farooque ◽  
Qing Li ◽  
Farhat Abbas ◽  
Bishnu Acharya

Groundwater availability, utilization, sustainability, and climate change implications were assessed at regional and provincial scales of Canada. It remains an unexplored resource, estimated to be renewing between 380 and 625 km3/year. However, the provinces have initiated developing their quantitative and qualitative databases for their accurate inventory. Sustainable groundwater availability at the national scale was estimated as 19,832 m3/person/year (750 km3/year), with high regional variations ranging from 3949 in the densely populated Prince Edward Island (PEI) province to 87,899 in the thinly populated Newfoundland and Labrador (NFL). It fulfills 82%, 43%, and 14% of water requirements of the rural population, irrigation, and industry, respectively. It is the potable water source for more than 9 million people countrywide (24% of the population), and provinces of Quebec, and Ontario (1.3 million people), and PEI (0.15 million people) particularly depend on it. It is mostly a free or nominally charged commodity, but its utilization was found to be well under sustainable limits (40% of recharge) at the provincial scales, i.e., under 4% for all the provinces except New Brunswick (NB), which also had just 8% extraction of sustainable availability. Nevertheless, localized issues of quantitative depletion and qualitative degradation were found at scattered places, particularly in Ontario and Quebec. Climate change impacts of warming and changing precipitations on groundwater underscored its stability with some temporal shifts in recharge patterns. In general, increased recharge in late winters and springs was observed due to reduced frost and more infiltration, and was somewhat decreasing in summers due to more intense rainfall events.

10.29007/kdpc ◽  
2018 ◽  
Author(s):  
Mohamed Mostafa Mohamed

Despite the continuous increase in water supply from desalination plants in the UAE, groundwater remains the major source of fresh water satisfying domestic and agricultural demands. Additionally, groundwater has always been considered as a strategic water source towards groundwater security in the country. Quantification of groundwater recharge is a prerequisite for efficient and sustainable groundwater resources management in arid regions. Therefore, groundwater recharge from the ephemeral Wadi beds and subsurface flow from mountainous valley beds play an important role in water management. Although, both surface and groundwater resources in UAE are scarce; the anticipated climate change impacts could make these resources even scarcer. As such, the main aim of this paper is to assess the potential impacts of future climate variability and change on groundwater recharge in the eastern region of UAE. This paper will explore rainfall characteristics in the region, their projections and their impacts on Wadi hydrology and groundwater recharge processes. Another objective of the study is to identify groundwater recharge regions to the shallow unconfined groundwater aquifer in the northeastern part of Abu-Dhabi Emirate. Outcomes of this study will help to accurately estimate current and future sustainable extraction rates, assess groundwater availability, and identify pathways and velocity of groundwater flow as crucial information for determining the best locations for artificial recharge.


Author(s):  
P K Bhunya ◽  
Sanjay Kumar ◽  
Sunil Gurrapu ◽  
M K Bhuyan

In recent times, several studies focused on the global warming that may affect the hydrological cycle due to intensification of temporal and spatial variations in precipitation. Such climatic change is likely to impact significantly upon freshwater resources availability. In India, demand for water has already increased manifold over the years due to urbanization, agriculture expansion, increasing population, rapid industrialization and economic development. Numerous scientific studies also report increases in the intensity, duration, and spatial extents of floods, higher atmospheric temperatures, warmer sea, changes in precipitation patterns, and changing groundwater levels. This work briefly discusses about the present scenario regarding impact of climate change on water resources in India. Due to the insufficient resolution of climate models and their generally crude representation of sub-grid scale and convective processes, little confidence can be placed in any definite predictions of such effects, although a tendency for more heavy rainfall events seems likely, and a modest increase in frequency in floods. Thus to analyses this effect, this work considers real problems about the changing flood characteristics pattern in two river regions, and the effect of spatial and temporal pattern in rainfall. In addition to these, the work also examines the trend of groundwater level fluctuations in few blocks of Ganga–Yamuna and Sutlej-Yamuna Link interfluves region. As a whole, it examines the potential for sustainable development of surface water and groundwater resources within the constraints imposed by climate change.


2020 ◽  
Vol 4 ◽  
Author(s):  
Stewart A. Jennings ◽  
Ann-Kristin Koehler ◽  
Kathryn J. Nicklin ◽  
Chetan Deva ◽  
Steven M. Sait ◽  
...  

The contribution of potatoes to the global food supply is increasing—consumption more than doubled in developing countries between 1960 and 2005. Understanding climate change impacts on global potato yields is therefore important for future food security. Analyses of climate change impacts on potato compared to other major crops are rare, especially at the global scale. Of two global gridded potato modeling studies published at the time of this analysis, one simulated the impacts of temperature increases on potential potato yields; the other did not simulate the impacts of farmer adaptation to climate change, which may offset negative climate change impacts on yield. These studies may therefore overestimate negative climate change impacts on yields as they do not simultaneously include CO2 fertilisation and adaptation to climate change. Here we simulate the abiotic impacts of climate change on potato to 2050 using the GLAM crop model and the ISI-MIP ensemble of global climate models. Simulations include adaptations to climate change through varying planting windows and varieties and CO2 fertilisation, unlike previous global potato modeling studies. Results show significant skill in reproducing observed national scale yields in Europe. Elsewhere, correlations are generally positive but low, primarily due to poor relationships between national scale observed yields and climate. Future climate simulations including adaptation to climate change through changing planting windows and crop varieties show that yields are expected to increase in most cases as a result of longer growing seasons and CO2 fertilisation. Average global yield increases range from 9 to 20% when including adaptation. The global average yield benefits of adaptation to climate change range from 10 to 17% across climate models. Potato agriculture is associated with lower green house gas emissions relative to other major crops and therefore can be seen as a climate smart option given projected yield increases with adaptation.


2017 ◽  
Vol 8 (3) ◽  
pp. 388-411 ◽  
Author(s):  
Hamed Tavakolifar ◽  
Ebrahim Shahghasemi ◽  
Sara Nazif

Climate change has impacted all phenomena in the hydrologic cycle, especially extreme events. General circulation models (GCMs) are used to investigate climate change impacts but because of their low resolution, downscaling methods are developed to provide data with high enough resolution for regional studies from GCM outputs. The performance of rainfall downscaling methods is commonly acceptable in preserving average characteristics, but they do not preserve the extreme event characteristics especially rainfall amount and distribution. In this study, a novel downscaling method called synoptic statistical downscaling model is proposed for daily precipitation downscaling with an emphasis on extreme event characteristics preservation. The proposed model is applied to a region located in central Iran. The results show that the developed model can downscale all percentiles of precipitation events with an acceptable performance and there is no assumption about the similarity of future rainfall data with the historical observations. The outputs of CCSM4 GCM for two representative concentration pathways (RCPs) of RCP4.5 and RCP8.5 are used to investigate the climate change impacts in the study region. The results show 40% and 30% increase in the number of extreme rainfall events under RCP4.5 and RCP8.5, respectively.


Author(s):  
Tibebe B. Tigabu ◽  
Paul D. Wagner ◽  
Georg Hörmann ◽  
Jens Kiesel ◽  
Nicola Fohrer

Abstract Climate change impacts on the water cycle can severely affect regions that rely on groundwater to meet their water demands in the mid- to long-term. In the Lake Tana basin, Ethiopia, discharge regimes are dominated by groundwater. We assess the impacts of climate change on the groundwater contribution to streamflow (GWQ) and other major water balance components in two tributary catchments of Lake Tana. Based on an ensemble of 35 bias-corrected regional climate models and a hydrologic catchment model, likely changes under two representative concentration pathways (RCP4.5 and 8.5) are assessed. No or only slight changes in rainfall depth are expected, but the number of rainy days is expected to decrease. Compared to the baseline average, GWQ is projected to decrease whereas surface runoff is projected to increase. Hence, rainfall trends alone are not revealing future water availability and may even be misleading, if regions rely heavily on groundwater.


Author(s):  
Vincent Itai Tanyanyiwa

Zimbabwe is a semi-arid country reliant on regular rains (November-April). Mean annual rainfall is low, and many rivers in the drier parts of the country are not perennial. In the small-scale horticultural sector, irrigation becomes handy. Rainfall exhibits spatial and temporal variability. This scenario is characterized by shifts in the onset of rains, increases in frequency and intensity of heavy rainfall events, increases in the proportion of low rainfall years, decreases in low-intensity rainfall events, and increases in the frequency and intensity of mid-season dry spells. Drought have increased in frequency and intensity. Agriculture is the main source of income for most smallholder farmers who depend on rain-fed cropping and livestock rearing. Adaptation of agriculture to climate variability and change impacts is vital for livelihood. To develop appropriate strategies and institutional responses to climate change adaptation, a clear understanding of climate change impacts on smallholder farmers at farm-level is vital.


Sign in / Sign up

Export Citation Format

Share Document